2025届山西省太原市六十六中高二上数学期末教学质量检测试题含解析_第1页
2025届山西省太原市六十六中高二上数学期末教学质量检测试题含解析_第2页
2025届山西省太原市六十六中高二上数学期末教学质量检测试题含解析_第3页
2025届山西省太原市六十六中高二上数学期末教学质量检测试题含解析_第4页
2025届山西省太原市六十六中高二上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省太原市六十六中高二上数学期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.古希腊数学家阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将之称为阿波罗尼斯圆.现有椭圆为椭圆长轴的端点,为椭圆短轴的端点,,分别为椭圆的左右焦点,动点满足面积的最大值为面积的最小值为,则椭圆的离心率为()A. B.C. D.2.若a,b,c为实数,且,则以下不等式成立的是()A. B.C. D.3.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或C.或 D.或4.已知M、N为椭圆上关于短轴对称的两点,A、B分别为椭圆的上下顶点,设、分别为直线的斜率,则的最小值为()A. B.C. D.5.中国历法推测遵循以测为辅,以算为主的原则.例如《周髀算经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.二十四节气中,从冬至到夏至的十三个节气依次为:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种、夏至.已知《周髀算经》中记录某年的冬至的晷影长为13尺,夏至的晷影长是1.48尺,按照上述规律,那么《周髀算经》中所记录的立夏的晷影长应为()A.尺 B.尺C.尺 D.尺6.双曲线与椭圆的焦点相同,则等于()A.1 B.C.1或 D.27.青少年视力被社会普遍关注,为了解他们的视力状况,经统计得到图中右下角名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数.如果执行如图所示的算法程序,那么输出的结果是()A. B.C. D.8.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定9.第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点和短轴一端点分别向内层椭圆引切线,(如图),且两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.10.已知圆与直线至少有一个公共点,则的取值范围为()A. B.C. D.11.已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数n的值是()A. B.C. D.12.“”是“直线和直线垂直”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知数列中,,且数列为等差数列,则_____________.14.抛物线()上的一点到其焦点F的距离______.15.函数的图象在处的切线方程为,则___________.16.数据:1,1,3,4,6的方差是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2021年10月16日,搭载“神舟十三号”的火箭发射升空,有很多民众通过手机、电视等方式观看有关新闻.某机构将关注这件事的时间在2小时以上的人称为“天文爱好者”,否则称为“非天文爱好者”,该机构通过调查,从参与调查的人群中随机抽取100人进行分析,得到下表(单位:人):天文爱好者非天文爱好者合计女203050男351550合计5545100(1)能否有99%的把握认为“天文爱好者”或“非天文爱好者”与性别有关?(2)现从抽取的女性人群中,按“天文爱好者”和“非天文爱好者”这两种类型进行分层抽样抽取5人,然后再从这5人中随机选出3人,记其中“天文爱好者”的人数为X,求X的分布列和数学期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.82818.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由19.(12分)设P是抛物线上一个动点,F为抛物线的焦点.(1)若点P到直线距离为,求的最小值;(2)若,求的最小值.20.(12分)分别求满足下列条件的曲线方程(1)以椭圆的短轴顶点为焦点,且离心率为的椭圆方程;(2)过点,且渐近线方程为的双曲线的标准方程21.(12分)已知函数.(1)求曲线在点处的切线方程;(2)求在区间上的最值.22.(10分)一杯100℃的开水放在室温25℃的房间里,1分钟后水温降到85℃,假设每分钟水温变化量和水温与室温之差成正比(1)分别求2分钟,3分钟后的水温;(2)记n分钟后的水温为,证明:是等比数列,并求出的通项公式;(3)当水温在40℃到55℃之间时(包括40℃和55℃),为最适合饮用的温度,则在水烧开后哪个时间段饮用最佳.(参考数据:)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题可得动点M的轨迹方程,可得,,即求.【详解】设,,由,可得=2,化简得.∵△MAB面积的最大值为面积的最小值为,∴,,∴,即,∴故选:A2、C【解析】利用不等式的性质直接推导和取值验证相结合可解.【详解】取可排除ABD;由不等式的性质易得C正确.故选:C3、C【解析】点关于轴的对称点为,由反射光线的性质,可设反射光线所在直线的方程为:,再利用直线与圆相切,可知圆心到直线的距离等于半径,由此即可求出结果【详解】点关于轴的对称点为,设反射光线所在直线的方程为:,化为因为反射光线与圆相切,所以圆心到直线的距离,可得,所以或故选:C4、A【解析】利用为定值即可获解.【详解】设则又,所以所以当且仅当,即,取等故选:A5、B【解析】根据等差数列定义求得公差,再求解立夏的晷影长在数列中所对应的项即可【详解】设从冬至到夏至的十三个节气依次为等差数列的前13项,则所以公差为,则立夏的晷影长应为(尺)故选:B6、A【解析】根据双曲线方程形式确定焦点位置,再根据半焦距关系列式求参数.【详解】因为双曲线的焦点在轴上,所以椭圆焦点在轴上,依题意得解得.故选:A7、B【解析】依题意该程序框图是统计这12名青少年视力小于等于的人数,结合茎叶图判断可得;【详解】解:根据程序框图可知,该程序框图是统计这12名青少年视力小于等于的人数,由茎叶图可知视力小于等于的有5人,故选:B8、A【解析】∵且,∴,又,∴,故选A.9、B【解析】分别设内外层椭圆方程为、,进而设切线、分别为、,联立方程组整理并结合求、关于a、b、m的关系式,再结合已知得到a、b的齐次方程求离心率即可.【详解】若内层椭圆方程为,由离心率相同,可设外层椭圆方程为,∴,设切线为,切线为,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故选:B.【点睛】关键点点睛:根据内外椭圆的离心率相同设椭圆方程,并写出切线方程,联立方程结合及已知条件,得到椭圆参数的齐次方程求离心率.10、C【解析】利用点到直线距离公式求出圆心到直线的距离范围,从而求出的取值范围.【详解】圆心到直线的距离,当且仅当时等号成立,故只需即可.故选:C11、C【解析】首先根据抛物线焦半径公式得到,从而得到,再根据曲线的一条渐近线与直线AM平行,斜率相等求解即可.【详解】由题知:,解得,抛物线.双曲线的左顶点为,,因为双曲线的一条渐近线与直线平行,所以,解得.故选:C12、A【解析】根据直线垂直求出值即可得答案.【详解】解:若直线和直线垂直,则,解得或,则“”是“直线和直线垂直”的充分非必要条件.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意得:考点:等差数列通项14、【解析】将点坐标代入方程中可求得抛物线的方程,从而可得到焦点坐标,进而可求出【详解】解:为抛物线上一点,即有,,抛物线的方程为,焦点为,即有.故答案为:5.15、【解析】根据导数的几何意义可得,根据切点在切线上可得.【详解】因为切线的斜率为,所以,又切点在切线上,所以,所以,所以.故答案为:.16、##3.6【解析】先计算平均数,再计算方差.【详解】该组数据的平均数为,方差为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有(2)分布列见解析,【解析】(1)依题意由列联表计算出卡方,与参考数值比较,即可判断;(2)按照分层抽样得到有2人为“天文爱好者”,有3人为“非天文爱好者”,记“天文爱好者”的人数为X,则X的可能值为0,1,2,即可求出所对应的概率,从而得到分布列与数学期望;【小问1详解】解:由题意,所以有99%的把握认为“天文爱好者”或“非天文爱好者”与性别有关.【小问2详解】解:抽取的100人中女性人群有50人,其中“天文爱好者”有20人,“非天文爱好者”有30人,所以按分层抽样在50个女性人群中抽取5人,则有2人为“天文爱好者”,有3人为“非天文爱好者”再从这5人中随机选出3人,记其中“天文爱好者”的人数为X,则X的可能值为0,1,2,∴,,,X的分布列如下表:X012P18、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果【小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,在中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因为,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,则,则平面与平面夹角的余弦值为,两边平方得,,解得或(舍去),所以,所以19、(1);(2)4.【解析】(1)利用抛物线的定义可知,将问题问题转化为求的最小值,即求.(2)判断点B在抛物线的内部,过B作垂直准线于点Q,交抛物线于点,利用抛物线的定义求解即可.【详解】解析(1)依题意,抛物线的焦点为,准线方程为.由已知及抛物线的定义,可知,于是问题转化为求的最小值.由平面几何知识知,当F,P,A三点共线时,取得最小值,最小值为,即的最小值为.(2)把点B的横坐标代入中,得,因为,所以点B在抛物线的内部.过B作垂直准线于点Q,交抛物线于点(如图所示).由抛物线的定义,可知,则,所以的最小值为4.【点睛】本题考查了抛物线的定义,理解定义是解题的关键,属于基础题.20、(1)(2)【解析】(1)由题意得出的值后写椭圆方程(2)待定系数法设方程,由题意列方程求解【小问1详解】的短轴顶点为(0,-3),(0,3),∴所求椭圆的焦点在y轴上,且c=3又,∴a=6.∴∴所求椭圆方程为【小问2详解】根据双曲线渐近线方程为,可设双曲线的方程,把代入得m=1.所以双曲线的方程为21、(1)(2)最小值为0,最大值为4【解析】(1)利用导数求得切线方程.(2)结合导数求得在区间上的最值.【小问1详解】,所以曲线在点处的切线方程为.【小问2详解】,所以在区间递增;在区间递减,,所以在区间上的最小值为,最大值为.22、(1)2分钟的水温为℃,3分钟后的水温℃;(2)证明见解析,,;(3)在水烧开后4到7分钟饮用最佳.【解析】(1)根据给定条件设第n分钟后的水温为,探求出与的关系即可计算作答.(2)利用(1)的信息,列式变形、推导即可得证,进而求出的通项公式.(3)由(2)的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论