青海省西宁市沛西中学2025届高二数学第一学期期末学业水平测试试题含解析_第1页
青海省西宁市沛西中学2025届高二数学第一学期期末学业水平测试试题含解析_第2页
青海省西宁市沛西中学2025届高二数学第一学期期末学业水平测试试题含解析_第3页
青海省西宁市沛西中学2025届高二数学第一学期期末学业水平测试试题含解析_第4页
青海省西宁市沛西中学2025届高二数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青海省西宁市沛西中学2025届高二数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若方程表示圆,则实数m的取值范围为()A B.C. D.2.已知函数在上可导,且,则与的大小关系为A. B.C. D.不确定3.已知椭圆及以下3个函数:①;②;③,其中函数图象能等分该椭圆面积的函数个数有()A.0个 B.1个C.2个 D.3个4.下列直线中,倾斜角为45°的是()A. B.C. D.5.如果双曲线的一条渐近线方程为,且经过点,则双曲线的标准方程是()A. B.C. D.6.已知等差数列{an}的前n项和为Sn,且S7=28,则a4=()A.4 B.7C.8 D.147.圆心在x轴上且过点的圆与y轴相切,则该圆的方程是()A. B.C. D.8.在棱长为1的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为90°B.存在点使得异面直线与所成角为45°C.存在点使得二面角的平面角为45°D.当时,平面截正方体所得的截面面积为9.已知一个几何体的三视图如图,则其外接球的体积为()A. B.C. D.10.下列说法错误的是()A.“若,则”的逆否命题是“若,则”B.“”的否定是”C.“是"”的必要不充分条件D.“或是"”的充要条件11.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;③回归直线就是散点图中经过样本数据点最多的那条直线;④如果两个变量的线性相关程度越高,则线性相关系数就越接近于;其中错误说法的个数是()A. B.C. D.12.某市统计局网站公布了2017年至2020年该市政府部门网站的每年的两项访问量,数据如下:年度项目2017年2018年2019年2020年独立用户访问总量(单位:个)2512573924400060989网站总访问量(单位:次)23435370348194783219288下列表述中错误的是()A.2017年至2018年,两项访问量都增长幅度较大;B.2018年至2019年,两项访问量都有所回落;C.2019年至2020年,两项访问量都又有所增长;D.从数据可以看出,该市政府部门网站的两项访问量都呈逐年增长态势二、填空题:本题共4小题,每小题5分,共20分。13.如图,在直棱柱中,,则异面直线与所成角的余弦值为___________.14.若圆心坐标为圆被直线截得的弦长为,则圆的半径为______.15.记为等比数列的前n项和,若,公比,则______16.过点的直线与抛物线相交于,两点,,则直线的方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)写出下列命题的逆命题、否命题以及逆否命题:(1)若,则;(2)已知为实数,若,则18.(12分)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别是,,离心率,请再从下面两个条件中选择一个作为已知条件,完成下面的问题:①椭圆C过点;②以点为圆心,3为半径的圆与以点为圆心,1为半径的圆相交,且交点在椭圆C上(只能从①②中选择一个作为已知)(1)求椭圆C的方程;(2)已知过点的直线l交椭圆C于M,N两点,点N关于x轴的对称点为,且,M,三点构成一个三角形,求证:直线过定点,并求面积的最大值.19.(12分)已知圆M:的圆心为M,圆N:的圆心为N,一动圆与圆N内切,与圆M外切,动圆的圆心E的轨迹为曲线C(1)求曲线C的方程;(2)已知点,直线l与曲线C交于A,B两点,且,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由20.(12分)在平面直角坐标系中,圆C:,直线l:(1)若直线l与圆C相切于点N,求切点N的坐标;(2)若,直线l上有且仅有一点A满足:过点A作圆C的两条切线AP、AQ,切点分别为P,Q,且使得四边形APCQ为正方形,求m的值21.(12分)已如空间直角标系中,点都在平面内,求实数y的值22.(10分)已知动圆过定点,且与直线相切,圆心的轨迹为(1)求动点的轨迹方程;(2)已知直线交轨迹于两点,,且中点的纵坐标为,则的最大值为多少?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据,解不等式即可求解.【详解】由方程表示圆,则,解得.所以实数m的取值范围为.故选:D2、B【解析】由,所以.3、C【解析】由椭圆的几何性质可得椭圆的图像关于原点对称,因为函数,函数为奇函数,其图像关于原点对称,则①②满足题意,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,得解.【详解】解:因为椭圆的图像关于原点对称,对于①,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于②,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于③,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像(如图)显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,即函数图象能等分该椭圆面积的函数个数有2个,故选C.【点睛】本题考查了椭圆的几何性质、函数的奇偶性及函数的对称性,重点考查了函数的性质,属基础题.4、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C5、D【解析】根据渐近线方程设出双曲线方程,然后将点代入,进而求得答案.【详解】因为双曲线的一条渐近线方程为,所以设双曲线方程为,将代入得:,即双曲线方程为.故选:D.6、A【解析】由等差数列的性质可知,再代入等差数列的前项和公式求解.【详解】数列{an}是等差数列,,那么,所以.故选:A.【点睛】本题考查等差数列的性质和前项和,属于基础题型.7、A【解析】根据题意设出圆的方程,列式即可求出【详解】依题可设圆的方程为,所以,解得即圆的方程是故选:A8、D【解析】由正方体的性质可将异面直线与所成的角可转化为直线与所成角,而当为的中点时,可得,可判断A;与或重合时,直线与所成的角最小可判断B;当与重合时,二面角的平面角最小,通过计算可判断C;过作,交于,交于点,由题意可得四边形即为平面截正方体所得的截面,且四边形是等腰梯形,然后利用已知数据计算即可判断D.【详解】异面直线与所成的角可转化为直线与所成角,当为中点时,,此时与所成的角为90°,所以A错误;当与或重合时,直线与所成角最小,为60°,所以B错误;当与重合时,二面角的平面角最小,,所以,所以C错误;对于D,过作,交于,交于点,因为,所以、分别是、的中点,又,所以,四边形即为平面截正方体所得的截面,因为,且,所以四边形是等腰梯形,作交于点,所以,,所以梯形的面积为,所以D正确.故选:D.9、D【解析】根据三视图还原几何体,将几何体补成长方体,计算出几何体的外接球直径,结合球体体积公式即可得解.【详解】根据三视图还原原几何体,如下图所示:由图可知,该几何体三棱锥,且平面,将三棱锥补成长方体,所以,三棱锥的外接球直径为,故,因此,该几何体的外接球的体积为.故选:D【点睛】方法点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解(2)若球面上四点P,A,B,C构成的三条线段两两互相垂直,一般把有关元素“补形”成为一个球内接长方体,利用求解10、C【解析】利用逆否命题、命题的否定、充分必要性的概念逐一判断即可.【详解】对于A,“若,则”的逆否命题是“若,则”,正确;对于B,“”的否定是”,正确;对于C,“”等价于“或,∴“是"”的充分不必要条件,错误;对于D,“或是"”的充要条件,正确.故选:C11、C【解析】根据统计的概念逐一判断即可.【详解】对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,①正确;对于②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;故②正确;对于③,线性回归方程必过样本中心点,回归直线不一定就是散点图中经过样本数据点最多的那条直线,也可能不过任何一个点;③不正确;对于④,如果两个变量的线性相关程度越高,则线性相关系数就越接近于,不正确,应为相关系数的绝对值就越接近于;综上,其中错误的个数是;故选:C.12、D【解析】根据表格数据,结合各选项的描述判断正误即可.【详解】A:2017年至2018年,两项访问量分别增长、,显然增长幅度相较于后两年是最大的,正确;B:2018年至2019年,两项访问量相较于2017年至2018年都有回落,正确;C:2019年至2020年,两项访问量分别增长、,正确;D:由B分析知,该市政府部门网站的两项访问量在2018年至2019年有回落,而不是逐年增长态势,错误.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立空间直角坐标系后求相关的向量后再用夹角公式运算即可.【详解】如图,以C为坐标原点,所在直线为x,y,z轴,建立空间直角坐标系,则,所以,所以,故异面直线与所成角的余弦值为,故答案为:.14、【解析】利用垂径定理计算即可.【详解】设圆的半径为,则,得.故答案为:.15、4【解析】根据给定条件列式求出数列的首项即可计算作答.【详解】依题意,,解得,所以.故答案为:416、##【解析】根据抛物线方程可得焦点坐标,进而点P为抛物线的焦点,设,利用抛物线的定义可得,有轴,即可得出结果.【详解】由题意知,抛物线的焦点坐标,又,所以点P为抛物线的焦点,设,由,由抛物线的定义得,解得,所以AB垂直与x轴,所以直线AB的方程为:.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)答案见解析【解析】(1)(2)根据逆命题、否命题以及逆否命题的定义作答即可;【小问1详解】解:逆命题:若,则;否命题:若,则;逆否命题:若,则【小问2详解】解:逆命题:已知为实数,若,则;否命题:已知为实数,若或,则;逆否命题:已知实数,若,则或18、(1)(2)证明见解析,【解析】(1)若选①,则由题意可得,解方程组求出,从而可求得椭圆方程,若选②,,再结合离心率和求出,从而可求得椭圆方程,(2)由题意设直线MN的方程为,设,,,将直线方程代入椭圆方程中,消去,再利用根与系数的关系,表示出直线的方程,令,求出,结合前面的式子化简可得线过的定点,表示出的面积,利用基本不等式可求得其最大值【小问1详解】若选①:由题意知,∴.所以椭圆C的方程为.若选②:设圆与圆相交于点Q.由题意知:.又因为点Q在椭圆上,所以,∴.又因为,∴,∴.所以椭圆C的方程为.【小问2详解】由题易知直线MN斜率存在且不为0,因为,故设直线MN方程为,设,,,∴,∴,,因为点N关于x轴对称点为,所以,所以直线方程为,令,∴.又,∴.所以直线过定点,∴.当且仅当,即时,取等号.所以面积的最大值为.19、(1),;(2)过,.【解析】(1)根据两圆内切和外切的性质,结合双曲线的定义进行求解即可;(2)设出直线l的方程与双曲线的方程联立,利用一元二次方程根与系数关系,结合平面向量数量积的坐标表示公式进行求解判断即可.【小问1详解】设圆E的圆心为,半径为r,则,,所以由双曲线定义可知,E的轨迹是以M,N为焦点、实轴长为6的双曲线的右支,所以动圆的圆心E的轨迹方程为,;【小问2详解】设,,直线l的方程为由得,且,故又,所以又,,所以,即.又故或若,则直线l的方程为,过点,与题意矛盾,所以,故,所以直线l的方程为,过点【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.20、(1)或(2)3.【解析】(1)设切点坐标,由切点和圆心连线与切线垂直以及切点在圆上建立关系式,求解切点坐标即可;(2)由圆的方程可得圆心坐标及半径,由APCQ为正方形,可得|AC|=可得圆心到直线的距离为,可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论