版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省漳平市一中2025届高二上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数是定义在上的奇函数,且,当时,有恒成立.则不等式的解集为()A. B.C. D.2.下列说法正确的是()A.“若,则,全为0”的否命题为“若,则,全不为0”B.“若方程有实根,则”的逆命题是假命题C.命题“,”的否定是“,”D.“”是“直线与直线平行”的充要条件3.数列满足,且,是函数的极值点,则的值是()A.2 B.3C.4 D.54.在正方体中,AC与BD的交点为M.设则下列向量与相等的向量是()A. B.C. D.5.在正方体中,与直线和都垂直,则直线与的关系是()A.异面 B.平行C.垂直不相交 D.垂直且相交6.已知数列中,,当时,,设,则数列的通项公式为()A. B.C. D.7.已知等比数列的公比为,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知是空间的一个基底,,,,若四点共面.则实数的值为()A. B.C. D.9.下列数列中成等差数列的是()A. B.C. D.10.在等比数列中,若,则公比()A. B.C.2 D.311.已知点、是双曲线C:的左、右焦点,P是C左支上一点,若直线的斜率为2,且为直角三角形,则双曲线C的离心率为()A.2 B.C. D.12.某学习小组研究一种卫星接收天线(如图①所示),发现其曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入形为抛物线的接收天线,经反射聚焦到焦点处(如图②所示).已知接收天线的口径(直径)为3.6m,深度为0.6m,则该抛物线的焦点到顶点的距离为()A.1.35m B.2.05mC.2.7m D.5.4m二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量X服从正态分布,若,则______14.等差数列的前项和为,已知,则__.15.已知双曲线:,斜率为的直线与E的左右两支分别交于A,B两点,点P的坐标为,直线AP交E于另一点C,直线BP交E于另一点D.若直线CD的斜率为,则E的离心率为___________16.已知正方体的棱长为6,E为棱的中点,F为棱上的点,且,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,直线与抛物线的准线交于点,为坐标原点,(1)求抛物线的方程;(2)直线与抛物线交于,两点,求的面积18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA+(2c+a)cosB=0(1)求角B的大小;(2)若b=4,△ABC的面积为,求a+c的值19.(12分)如图1是直角梯形,以为折痕将折起,使点C到达的位置,且平面与平面垂直,如图2(1)求异面直线与所成角的余弦值;(2)在棱上是否存在点P,使平面与平面的夹角为?若存在,则求三棱锥的体积,若不存在,则说明理由20.(12分)已知圆,直线(1)判断直线与圆的位置关系;(2)若直线与圆交于不同两点,且,求直线的方程21.(12分)求下列不等式的解集:(1);(2).22.(10分)已知:圆是的外接圆,边所在直线的方程为,中线所在直线的方程为,直线与圆相切于点.(1)求点和点的坐标;(2)求圆的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据当时,可知在上单调递减,结合可确定在上的解集;根据奇偶性可确定在上的解集;由此可确定结果.【详解】,当时,,在上单调递减,,,在上的解集为,即在上的解集为;又为上的奇函数,,为上的偶函数,在上的解集为,即在上的解集为;当时,,不合题意;综上所述:的解集为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题,关键是能够通过构造函数的方式,确定所构造函数的单调性和奇偶性,进而根据零点确定不等式的解集.2、D【解析】A选项,全为0的否定是不全为0;B选项,先写出逆命题,再判断出真假;C选项,命题“,”的否定是“,”,D选项,根据直线平行,列出方程和不等式,求出,进而判断出充要条件.【详解】“若,则,全为0”的否命题为“若,则,不全为0”,A错误;若方程有实根,则的逆命题是若,则方程有实根,由得:,其中,所以若,则方程有实根是真命题,故B错误;命题“,”的否定是“,”,C错误;直线与直线平行,需要满足且,解得:,所以“”是“直线与直线平行”的充要条件,D正确;故选:D3、C【解析】利用导数即可求出函数的极值点,再利用等差数列的性质及其对数的运算性质求解即可【详解】由,得,因为,是函数的极值点,所以,是方程两个实根,所以,因为数列满足,所以,所以数列为等差数列,所以,所以,故选:C4、C【解析】根据空间向量的运算法则,推出的向量表示,可得答案.【详解】,故选:C.5、B【解析】以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,根据向量垂直的坐标表示求出,再利用向量的坐标运算可得,根据共线定理即可判断.【详解】设正方体的棱长为1.以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,则.设,则,取.,.故选:B【点睛】本题考查了空间向量垂直的坐标表示、空间向量的坐标表示、空间向量共线定理,属于基础题.6、A【解析】根据递推关系式得到,进而利用累加法可求得结果【详解】数列中,,当时,,,,,且,,故选:A7、B【解析】先分析充分性:假设特殊等比数列即可判断;再分析充分性,由条件得恒成立,再对和进行分类讨论即可判断.【详解】先分析充分性:在等比数列中,,所以假设,,所以,等比数列为递减数列,故充分性不成立;分析必要性:若等比数列的公比为,且是递增数列,所以恒成立,即恒成立,当,时,成立,当,时,不成立,当,时,不成立,当,时,不成立,当,时,成立,当,时,不成立,当,时,不恒成立,当,时,不恒成立,所以能使恒成立的只有:,和,,易知此时成立,所以必要性成立.故选:B.8、A【解析】由共面定理列式得,再根据对应系数相等计算.【详解】因为四点共面,设存在有序数对使得,则,即,所以得.故选:A9、C【解析】利用等差数列定义,逐一验证各个选项即可判断作答.【详解】对于A,,A不是等差数列;对于B,,B不是等差数列;对于C,,C是等差数列;对于D,,D不是等差数列.故选:C10、C【解析】由题得,化简即得解.【详解】因为,所以,所以,解得.故选:C11、B【解析】根据双曲线的定义和勾股定理利用即可得离心率.【详解】∵直线的斜率为2,为直角三角形,∴,又,∴,.∵,即,∴故选:B.12、A【解析】根据题意先建立恰当的坐标系,可设出抛物线方程,利用已知条件得出点在抛物线上,代入方程求得p值,进而求得焦点到顶点的距离.【详解】如图所示,在接收天线的轴截面所在平面上建立平面直角坐标系xOy,使接收天线的顶点(即抛物线的顶点)与原点O重合,焦点F在x轴上设抛物线的标准方程为,由已知条件可得,点在抛物线上,所以,解得,因此,该抛物线的焦点到顶点的距离为1.35m,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##25【解析】根据正态分布曲线的对称性即可求得结果.【详解】,,又,,.故答案为:.14、【解析】根据等差数列的求和公式和等差数列的性质即可求出.【详解】因为等差数列的前项和为,,则,故答案为:33.【点睛】本题考查了等差数列的求和公式和等差数列的性质,属于基础题.15、【解析】分别设线段的中点,线段的中点,再利用点差法可表示出,由平行关系易知三点共线,从而利用斜率相等的关系构造方程,代入整理可得到关系,利用双曲线得到关于的齐次方程,进而求得离心率.【详解】设,,线段的中点,两式相减得:…①设,,线段的中点同理可得:…②,易知三点共线,将①②代入得:,所以,即,由题意可得,故.∴,即故答案为:16、18【解析】建立空间直角坐标系,利用空间向量的数量积运算求解.【详解】建立如图所示空间直角坐标系:则,所以,所以,故答案为:18三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意建立关于的方程,解得的值即可.(2)联列方程组并消元,韦达定理整体思想求的长,再求点到直线的距离,进而求面积.【小问1详解】由题意可得,,则,因为,所以,解得,故抛物线的方程为【小问2详解】由(1)可知,则点到直线的距离联立,整理得设,,则,从而因为直线过抛物线的焦点,所以故的面积为18、(1)(2)【解析】(1)利用正弦定理化简,通过两角和与差的三角函数求出,即可得到结果(2)利用三角形的面积求出,通过由余弦定理求解即可【详解】解:(1)因为bcosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【点睛】本题主要考查了利用正、余弦定理及三角形的面积公式解三角形问题,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到19、(1)(2)存在,靠近点D的三等分点.【解析】(1)由题意建立空间直接坐标系,求得的坐标,由求解;(2)假设棱上存在点P,设,求得点p坐标,再求得平面PBE的一个法向量,由平面,得到为平面的一个法向量,然后由求解.【小问1详解】解:因为,所以四边形ABCE是平行四边形,又,所以四边形ABCE是菱形,,又平面与平面垂直,又平面与平面=EB,所以平面,建立如图所示空间直接坐标系:则,所以,则,所以异面直线与所成角的余弦值是;【小问2详解】假设棱上存在点P,使平面与平面的夹角为,设,则,又,设平面PBE的一个法向量为,则,即,则,由平面,则为平面的一个法向量,所以,解得.20、(1)直线与圆相交;(2)或【解析】(1)通过比较圆心到直线的距离与半径的关系,不难发现直线和圆相交.(2)根据垂径定理,得到圆心与直线的距离,进而列方程求解即可试题解析:(1)将圆方程化为标准方程,所以圆的圆心,半径,圆心到直线的距离,因此直线与圆相交(2)设圆心到直线的距离为,则,又,解得所求直线为或考点:直线与圆的位置关系21、(1)(2)【解析】(1)根据一元二次不等式的解法求得不等式的解集.(2)根据分式不等式的解法求得不等式的解集.【小问1详解】不等式等价于,解得.∴不等式的解集为.【小问2详解】不等式等价于,解得或.∴不等式的解集为.22、(1)A(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美食节场地租赁合同
- 招聘营销试用合同范例
- 营销推广合作委托合同三篇
- 私人住宅装修合同三篇
- 黄金投资合同三篇
- 货物装卸合同(2篇)
- 公积金抵债协议书
- 土地法超过2028年的承包合同
- 铲车用工合同范例
- 顾问用工合同范例
- 儿童故事:约瑟夫有件旧外套课件
- 水池满水试验报告
- 【精品】小学四年级语文阅读理解专项练习(共20篇)(常用)
- 江苏省第十四批省级民主法治示范村
- 两班倒排班表excel模板
- 数学说题大赛评分标准
- 人教版高中英语必修5_unit2The_united_Kingdom_Reading
- 哈汽东芝型超超临界1000MW汽轮机低压缸动静碰磨故障分析与对策
- 温州市房屋租赁合同-通用版
- 医源性冠状动脉夹层的识别与防治
- 空心薄壁墩翻模施工技术交底(修改)
评论
0/150
提交评论