版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省郴州市平和中学2021年高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若指数函数的图象经过点,则=(
)A.4
B.2
C.1
D.0参考答案:B2.对于任意实数、、、,下列命题中,真命题为().①若,,则;②若,则;③若,则;④若,则.A.① B.② C.③ D.④参考答案:C【考点】R3:不等式的基本性质.【分析】通过举反例可以得出①、②、④不正确,从而排除,由不等式的性质可得只有③正确.【解答】解:当时,①不成立;当时,②不成立;由不等式的性质知③成立,当时,④不成立.综上,只有③成立,故选.3.已知f(x)是定义在R上的奇函数,且在[0,+∞)单调递增,若f(lgx)<0,则x的取值范围是()A.(0,1) B.(1,10) C.(1,+∞) D.(10,+∞)参考答案:A【考点】奇偶性与单调性的综合.【分析】根据函数是奇函数,且在[0,+∞)单调递增,得到函数在R上单调递增,利用函数的单调性解不等式即可得到结论.【解答】解:∵f(x)是定义在R上的奇函数,且在[0,+∞)单调递增,∴函数在R上单调递增,且f(0)=0,则由f(lgx)<0=f(0)得lgx<0,即0<x<1,∴x的取值范围是(0,1),故选:A.4.下表提供了某厂节能降耗技术改造后在生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:34562.53
4.5若根据上表提供的数据用最小二乘法可求得对的回归直线方程是0.7+0.35,则表中的值为(
)A.4
B.4.5
C.3
D.3.5参考答案:A略5.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有()
(A)3个
(B)4个
(C)5个
(D)6个参考答案:A
解析:,故选A。也可用摩根律:6.已知集合A=,B=,则A与B的关系是(
)A.A
B.
C.B
D.参考答案:C7.三棱锥中,,是等腰直角三角形,.若为中点,则与平面所成的角的大小等于(
)A.
B.
C.
D.参考答案:B8.在△ABC中,sin2A+cos2B=1,则cosA+cosB+cosC的最大值为()A.
B.C.1
D.参考答案:D由sin2A+cos2B=1,得cos2B=cos2A.又A、B为△ABC的内角,所以A=B,则C=π-2A.cosA+cosB+cosC=2cosA+cos(π-2A)=2cosA-cos2A=-2cos2A+2cosA+1=-22+,可知当cosA=时,cosA+cosB+cosC取得最大值.9.的斜二侧直观图如图所示,则的面积为(
)A.
B.
C.
D.
参考答案:B略10.数列{an}满足,则an=()A. B. C. D.参考答案:B【考点】8H:数列递推式.【分析】利用数列递推关系即可得出.【解答】解:∵,∴n≥2时,a1+3a2+…+3n﹣2an﹣1=,∴3n﹣1an=,可得an=.n=1时,a1=,上式也成立.则an=.故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.设集合={a2,a+b,0},则a2014+b2015=
.参考答案:1【考点】集合的包含关系判断及应用.【分析】根据集合相等的条件建立条件关系,即可求出a,b的值,进而可得a2014+b2015的值.【解答】解:∵集合A={a,,1},B={a2,a+b,0},且A=B,∴a≠0,则必有=0,即b=0,此时两集合为A={a,0,1},集合Q={a2,a,0},∴a2=1,∴a=﹣1或1,当a=1时,集合为P={1,0,1},集合Q={1,1,0},不满足集合元素的互异性.当a=﹣1时,P={﹣1,0,1},集合Q={1,﹣1,0},满足条件,故a=﹣1,b=0.a2014+b2015=1,故答案为:1.12.若函数f(x)=在(﹣∞,+∞)单调递增,则实数a的取值范围是.参考答案:[,2)【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】若函数f(x)=在(﹣∞,+∞)上单调递增,则每段函数均为增函数,且当x=1时,前一段函数的函数值不大于后一段函数的函数值,由此可构造满足条件的不等式组,解出实数a的取值范围.【解答】解:∵函数f(x)=在(﹣∞,+∞)上单调递增,则,解得:a∈[,2);故实数a的取值范围是[,2),故答案为:[,2)【点评】本题考查的知识点是函数单调性的性质,熟练掌握分段函数的单调性是解答的关键.13.已知实数满足则点构成的区域的面积为
,的最大值为
参考答案:8,11试题分析:先画出满足条件的平面区域,从而求出三角形面积,令,变为,显然直线过时,z最大进而求出最大值。考点:线性规划问题,求最优解14.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09mg/mL,那么,一个喝了少量酒后的驾驶员,至少经过
小时,才能开车?(精确到1小时).参考答案:515.已知,那么的最小值是_______参考答案:516.已知数列{an}为等比数列,,,则数列{an}的公比为__________.参考答案:2【分析】设等比数列的公比为,由可求出的值.【详解】设等比数列的公比为,则,,因此,数列的公比为2,故答案为:2.【点睛】本题考查等比数列公比的计算,在等比数列的问题中,通常将数列中的项用首项和公比表示,建立方程组来求解,考查运算求解能力,属于基础题.17.已知函数f(x)=,若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,则实数a的取值范围是
.参考答案:(,+∞)∪(﹣∞,0]
【考点】分段函数的应用.【分析】由题意可得,在定义域内,函数f(x)不是单调的,考虑x≥1时,讨论函数的单调性,即可求得结论.【解答】解:依题意,在定义域内,函数f(x)不是单调函数,分情况讨论:①当x≥1时,若f(x)=x2﹣3ax不是单调的,它的对称轴为x=a,则有a>1,解得a>;②当x≥1时,若f(x)=x2﹣3ax是单调的,则f(x)单调递增,此时a≤1,即a≤.当x<1时,由题意可得f(x)=ax+1﹣4a应该不单调递增,故有a≤0.综合得:a的取值范围是(,+∞)∪(﹣∞,0].故答案为:(,+∞)∪(﹣∞,0].三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x),g(x)满足关系g(x)=f(x)?f(x+α),其中α是常数.(1)设f(x)=cosx+sinx,,求g(x)的解析式;(2)设计一个函数f(x)及一个α的值,使得;(3)当f(x)=|sinx|+cosx,时,存在x1,x2∈R,对任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.参考答案:(1)(2)f(x)=2cosx,α=-(3)【分析】(1)求出f(x+α),代入g(x)=f(x)?f(x+α)化简得出.(2)对g(x)化简得=4cosx?cos(x-),故f(x)=2cosx,α=-.(3)求出g(x)的解析式,由题意得g(x1)为最小值,g(x2)为最大值,求出x1,x2,从而得到|x1-x2|的最小值.【详解】(1)∵f(x)=cosx+sinx,∴f(x+α)=cos(x+)+sin(x+)=cosx-sinx;∴g(x)=(cosx+sinx)(cosx-sinx)=cos2x-sin2x=cos2x.(2)∵=4cosx?cos(x-),∴f(x)=2cosx,α=-.(3)∵f(x)=|sinx|+cosx,∴g(x)=f(x)?f(x+α)=(|sinx|+cosx)(|cosx|-sinx)=,因为存在x1,x2∈R,对任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,所以当x1=2kπ+π或时,g(x)≥g(x1)=-1当时,g(x)≤g(x2)=2所以或所以|x1-x2|的最小值是.【点睛】本题考查了三角函数的恒等变换,三角函数的图像及性质,考查分段函数的应用,属于中档题.19.(本小题满分10分)已知集合(1)当时,求;(2)若,求实数的取值范围。参考答案:(1)
(2)20.已知函数.
(1)求的定义域;
(2)在函数的图像上是否存在不同的两点,使过此两点的直线平行于轴;
(3)当满足什么关系时,在上恒取正值.参考答案:解:(1)由得,
(2分)由已知,故,
(3分)即函数的定义域为.
(4分)
(2)设
则.
(5分)
故,
即.在上为增函数.
(6分)
假设函数的图像上存在不同的两点,使直线平行于轴,即,这与是增函数矛盾.故函数的图像上不存在不同的两点,使过这两点的直线平行于轴.
(8分)(3)由(2)知,在是增函数,
在上也是增函数.
(9分)当时,.
(10分)只需,即,即,
(11分)时,在上恒取正值.
(12分)
略21.(10分)如图所示,近日我渔船编队在岛A周围海域作业,在岛A的南偏西20°方向有一个海面观测站B,某时刻观测站发现有不明船只向我渔船编队靠近,现测得与B相距31海里的C处有一艘海警船巡航,上级指示海警船沿北偏西40°方向,以40海里/小时的速度向岛A直线航行以保护我渔船编队,30分钟后到达D处,此时观测站测得B,D间的距离为21海里.(Ⅰ)求sin∠BDC的值;(Ⅱ)试问海警船再向前航行多少分钟方可到岛A?
参考答案:【考点】解三角形的实际应用.【分析】(Ⅰ)由已知可得CD=20,△BDC中,根据余弦定理求得cos∠BDC的值,再利用同角三角函数的基本关系求得sin∠BDC的值.(Ⅱ)由已知可得∠BAD=60°,由此可得sin∠ABD=sin(∠BDC﹣60°)的值,再由正弦定理求得AD的值,由此求得海警船到达A的时间.【解答】解:(Ⅰ)由已知可得CD=40×=20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年合资合同范例
- 2024年度茶楼广告投放合同
- 2024年度大型活动物资搬运与运输合同
- 南通农村房屋买卖合同范本
- 2024年度云计算平台迁移与优化合同
- 2024年度瓷砖专卖店培训合作合同
- 2024年度版权许可使用合同(摄影)
- 2024年度美团娱乐场所商家入驻与合作框架协议
- 二零二四年度品牌使用许可协议
- 整本装修合同范本
- 2022年江苏凤凰出版传媒集团有限公司招聘笔试试题及答案解析
- 光伏发电项目工程施工分包合同
- 腐蚀与防护概述课件
- 信息中心应急演练记录表(含内容)
- 饰面用花岗岩矿普查实施方案
- 屠宰企业(生猪屠宰场)安全风险分级管控体系方案资料汇编(2022-2023年)
- 小学学生发展指导中心工作方案
- 班主任的工作艺术课件
- 赴昆山市学习考察招商引资的几点启示和思考
- 超星尔雅学习通【军事理论(上海财经大学)】章节测试及答案
- 2022年西安港国际投资管理有限公司招聘笔试题库及答案解析
评论
0/150
提交评论