黄山市重点中学2025届数学高一上期末学业质量监测试题含解析_第1页
黄山市重点中学2025届数学高一上期末学业质量监测试题含解析_第2页
黄山市重点中学2025届数学高一上期末学业质量监测试题含解析_第3页
黄山市重点中学2025届数学高一上期末学业质量监测试题含解析_第4页
黄山市重点中学2025届数学高一上期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黄山市重点中学2025届数学高一上期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度2.已知是第二象限角,,则()A. B.C. D.3.将函数的图象沿轴向右平移个单位后,得到的函数图象关于轴对称,则的值可以是()A. B.C. D.4.已知指数函数(,且),且,则的取值范围()A. B.C. D.5.若,则下列说法正确的是()A.若,则 B.若,则C.若且,则 D.若,则6.已知函数(其中)的图象如下图所示,则的图象是()A. B.C. D.7.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A. B.C. D.8.已知,,,则a,b,c的大小关系为()A. B.C. D.9.下列函数中,既是奇函数又在区间上单调递增的是()A. B.C. D.10.“”是的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x)=sinx-2cosx+的一个零点是,则tan=_________.12.已知集合,,则集合中元素的个数为__________13.在正方体ABCD-A1B1C1D1中,E、F是分别是棱A1B1、A1D1的中点,则A1B与EF所成角的大小为______14.设函数,若实数满足,且,则的取值范围是_______________________15.已知,则函数的最大值为__________.16.如果函数满足在集合上的值域仍是集合,则把函数称为H函数.例如:就是H函数.下列函数:①;②;③;④中,______是H函数(只需填写编号)(注:“”表示不超过x的最大整数)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数在是增函数,求的取值范围;(2)若对于任意的,恒成立,求的取值范围.18.已知函数,且关于x的不等式的解集为(1)求实数b,m的值;(2)当时,恒成立,求实数k的取值范围19.如图所示,一块形状为四棱柱的木料,分别为的中点.(1)要经过和将木料锯开,在木料上底面内应怎样画线?请说明理由;(2)若底面是边长为2菱形,,平面,且,求几何体的体积.20.十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划,2020年某企业计划引进新能源汽车生产设备看,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆)需另投入成本y(万元),且由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完(1)求出2020年的利润S(万元)关于年产量x(百辆)的函数关系式;(利润=销售额减去成本)(2)当2020年产量为多少百辆时,企业所获利润最大?并求出最大利润21.已知(1)若p为真命题,求实数x的取值范围(2)若p为q成立的充分不必要条件,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.2、B【解析】利用同角三角函数基本关系式求解.【详解】因为是第二象限角,,且,所以.故选:B.3、C【解析】首先求平移后的解析式,再根据函数关于轴对称,当时,,求的值.【详解】函数的图象沿轴向右平移个单位后的解析式是,若函数图象关于轴对称,当时,,解得:,当时,.故选:C【点睛】本题考查函数图象变换,以及根据函数性质求参数的取值,意在考查基本知识,属于基础题型.4、A【解析】根据指数函数的单调性可解决此题【详解】解:由指数函数(,且),且根据指数函数单调性可知所以,故选:A5、D【解析】根据选项举反例即可排除ABC,结合不等式性质可判断D【详解】对A,取,则有,A错;对B,取,则有,B错;对C,取,则有,C错;对D,若,则正确;故选:D6、A【解析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【详解】解:由图象可知:,因,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A7、A【解析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A8、D【解析】与中间值1和2比较.【详解】,,,所以故选:D.【点睛】本题考查幂与对数的大小比较,在比较对数和幂的大小时,能化为同底数的化为同底数,再利用函数的单调性比较,否则可借助中间值比较,如0,1,2等等.9、D【解析】利用是偶函数判定选项A错误;利用判定选项B错误;利用的定义域判定选项C错误;利用奇偶性的定义证明是奇函数,再通过基本函数的单调性判定的单调性,进而判定选项D正确.【详解】对于A:是偶函数,即选项A错误;对于B:是奇函数,但,所以在区间上不单调递增,即选项B错误;对于C:是奇函数,但的定义域为,,即选项C错误;对于D:因为,,有,即奇函数;因为在区间上单调递增,在区间上单调递增,所以在区间上单调递增,即选项D正确.故选:D.10、A【解析】先看时,是否成立,即判断充分性;再看成立时,能否推出,即判断必要性,由此可得答案.【详解】当时,,即“”是的充分条件;当时,,则或,则或,即成立,推不出一定成立,故“”不是的必要条件,故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、##-0.5【解析】应用辅助角公式有且,由正弦型函数的性质可得,,再应用诱导公式求.【详解】由题设,,,令,可得,即,,所以,,则.故答案为:12、2【解析】依题意,故,即元素个数为个.13、【解析】解:如图,将EF平移到A1B1,再平移到AC,则∠B1AC为异面直线AB1与EF所成的角三角形B1AC为等边三角形,故异面直线AB1与EF所成的角60°,14、【解析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:15、【解析】换元,,化简得到二次函数,根据二次函数性质得到最值.【详解】设,,则,,故当,即时,函数有最大值为.故答案为:.【点睛】本题考查了指数型函数的最值,意在考查学生的计算能力,换元是解题的关键.16、③④【解析】根据新定义进行判断.【详解】根据定义可以判断①②在集合上的值域不是集合,显然不是H函数.③④是H函数.③是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足是H函数.④是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足H函数.故答案为:③④三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由函数可知对称轴为,由单调性可知,即可求解;(2)整理问题为在时恒成立,设,则可转化问题为在时恒成立,讨论对称轴与的位置关系,进而求解.【小问1详解】因为函数,所以对称轴为,因为在是增函数,所以,解得【小问2详解】因为对于任意的,恒成立,即在时恒成立,所以在时恒成立,设,则对称轴为,即在时恒成立,当,即时,,解得;当,即时,,解得(舍去),故.18、(1),;(2).【解析】(1)根据韦达定理求解即可;(2)转化为在上恒成立,利用均值不等式求的最小值即可.【小问1详解】由题意得:,1是方程的根,由韦达定理得,所以,又,解得所以,【小问2详解】由题意得,在上恒成立,令,只需即可,由均值不等式得,当且仅当,即时等号成立所以,则的取值范围是19、(1)见解析(2)3【解析】(1)根据面面平行的性质,两个平行平面,被第三个平面所截,截得的交线互相平行,故得到就是应画的线;(2)几何体是由三棱锥和四棱锥组成,分割成两个棱锥求体积即可解析:(1)连接,则就是应画的线;事实上,连接,在四棱柱中,因为分别为的中点,所以,,所以平行四边形,所以,又在四棱柱中,所以,所以点共面,又面,所以就是应画线.(2)几何体是由三棱锥和四棱锥组成.因为底面是边长为的菱形,,平面,连接,即为三棱锥的高,又,所以,连接,为四棱锥的高,又,所以,所以几何体的体积为.20、(1)(2)100百辆时,1300万元【解析】(1)分和,由利润=销售额减去成本求解;(2)由(1)的结果,利用二次函数和对勾函数的性质求解.【小问1详解】解:由题意得当,,当时,,所以;【小问2详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论