2025届北京海淀北方交大附中数学高一上期末监测模拟试题含解析_第1页
2025届北京海淀北方交大附中数学高一上期末监测模拟试题含解析_第2页
2025届北京海淀北方交大附中数学高一上期末监测模拟试题含解析_第3页
2025届北京海淀北方交大附中数学高一上期末监测模拟试题含解析_第4页
2025届北京海淀北方交大附中数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京海淀北方交大附中数学高一上期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,将等腰直角△ABC沿斜边BC上的高AD折成一个二面角,使得∠B′AC=60°.那么这个二面角大小是()A.30° B.60°C.90° D.120°2.某几何体的三视图都是全等图形,则该几何体一定是()A.圆柱 B.圆锥C.三棱锥 D.球体3.设P为函数图象上一点,O为坐标原点,则的最小值为()A.2 B.C. D.4.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数与传染源感染后至隔离前时长t(单位:天)的模型:.已知甲传染源感染后至隔离前时长为5天,与之相关确诊病例人数为8;乙传染源感染后至隔离前时长为8天,与之相关确诊病例人数为20.若某传染源感染后至隔离前时长为两周,则与之相关确诊病例人数约为()A.44 B.48C.80 D.1255.下列区间是函数的单调递减区间的是()A. B.C. D.6.已知函数则的值为()A. B.C.0 D.17.已知是函数的反函数,则的值为()A.0 B.1C.10 D.1008.缪天荣,浙江人,著名眼科专家、我国眼视光学的开拓者.上世纪年代,我国使用“国际标准视力表”检测视力,采用“小数记录法”记录视力数据,缪天荣发现其中存在不少缺陷.经过年苦心研究,年,他成功研制出“对数视力表”及“分记录法”.这是一种既符合视力生理又便于统计和计算的视力检测系统,使中国的眼视光学研究站在了世界的巅峰.“分记录法”将视力和视角(单位:)设定为对数关系:.如图,标准对数视力表中最大视标的视角为,则对应的视力为.若小明能看清的某行视标的大小是最大视标的(相应的视角为),取,则其视力用“分记录法”记录()A. B.C. D.9.已知函数在上单调递减,且关于的方程恰好有两个不相等的实数解,则的取值范围是()A. B.C. D.10.已知函数的部分图象如图所示,点,是该图象与轴的交点,过点作直线交该图象于两点,点是的图象的最高点在轴上的射影,则的值是A B.C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,则的值为______12.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________.13.已知函数在上单调递增,则实数a的取值范围为____.14.点是一次函数图象上一动点,则的最小值是______15.已知正数x、y满足x+=4,则xy的最大值为_______.16.不等式的解集是___________.(用区间表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,直三棱柱ABC﹣A1B1C1中,M,N分别为棱AC和A1B1的中点,且AB=BC(1)求证:平面BMN⊥平面ACC1A1;(2)求证:MN∥平面BCC1B118.计算:(1);(2).19.记.(1)化简;(2)若为第二象限角,且,求的值.20.已知函数.(1)求函数的定义域;(2)若实数,且,求的取值范围.21.函数部分图象如下图所示:(1)求函数的解析式;(2)求函数的最小正周期与单调递减区间;(3)求函数在上的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据折的过程中不变的角的大小、结合二面角的定义进行判断即可.【详解】因为AD是等腰直角△ABC斜边BC上的高,所以,因此是二面角的平面角,∠B′AC=60°.所以是等边三角形,因此,在中.故选:C【点睛】本题考查了二面角的判断,考查了数学运算能力,属于基础题.2、D【解析】任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆【详解】球、长方体、三棱锥、圆锥中,任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是等圆,故答案为:D【点睛】本题考查简单空间图形的三视图,本题解题的关键是看出各个图形的在任意方向上的视图,本题是一个基础题3、D【解析】根据已知条件,结合两点之间的距离公式,以及基本不等式的公式,即可求解【详解】为函数的图象上一点,可设,,当且仅当,即时,等号成立故的最小值为故选:4、D【解析】根据求得,由此求得的值.【详解】依题意得,,,所以.故若某传染源感染后至隔离前时长为两周,则相关确诊病例人数约为125.故选:D5、D【解析】取,得到,对比选项得到答案.【详解】,取,,解得,,当时,D选项满足.故选:D.6、D【解析】根据分段函数解析式及指数对数的运算法则计算可得;【详解】解:因为,所以,所以,故选:D7、A【解析】根据给定条件求出的解析式,再代入求函数值作答.【详解】因是函数的反函数,则,,所以的值为0.故选:A8、C【解析】将代入,求出的值,即可得解.【详解】将代入函数解析式可得.故选:C.9、C【解析】由在,上单调递减,得,由在上单调递减,得,作出函数且在上的大致图象,利用数形结合思想能求出的取值范围【详解】解:由在上单调递减,得,又由且在上单调递减,得,解得,所以,作出函数且在上的大致图象,由图象可知,在上,有且仅有一个解,故在上,同样有且仅有一个解,当,即时,联立,即,则,解得:,当时,即,由图象可知,符合条件综上:故选:C10、B【解析】分析:由图象得到函数的周期,进而求得.又由条件得点D,E关于点B对称,可得,然后根据数量积的定义求解可得结果详解:由图象得,∴,∴又由图象可得点B为函数图象的对称中心,∴点D,E关于点B对称,∴,∴故选B点睛:本题巧妙地将三角函数的图象、性质和向量数量积的运算综合在一起,考查学生分析问题和解决问题的能力.解题的关键是读懂题意,通过图象求得参数;另外,根据函数图象的对称中心将向量进行化简,从而达到能求向量数量积的目的二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据同角的三角函数的关系,利用结合两角和的余弦公式即可求出【详解】,,,,,故答案为.【点睛】本题主要考查同角的三角函数的关系,两角和的余弦公式,属于中档题.已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值,角的变换是解题的关键12、【解析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可【详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则;当时,在上单调递增,在上单调递减,则,所以的最大值为4;对于函数,,因为,所以,所以;所以,即,故,故答案为:【点睛】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想13、【解析】由题意,利用复合函数的单调性,对数函数、二次函数的性质,求得的范围【详解】解:函数在上单调递增,函数在上单调递增,且,,解得,即,故答案:14、【解析】把点代入函数的解析式得到,然后利用基本不等式求最小值.【详解】由题意可知,又因为,所以,当且仅当即时等号成立所以的最小值是.故答案为:.15、8【解析】根据,利用基本不等式即可得出答案.【详解】解:,当且仅当,即时,取等号,所以xy的最大值为8.故答案为:8.16、【解析】根据一元二次不等式解法求不等式解集.【详解】由题设,,即,所以不等式解集为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】(1)由面面垂直的性质定理证明平面,再由面面垂直的判定定理得证面面垂直;(2)取BC中点P,连接B1P和MP,可证MN∥PB1,从而可证线面平行【详解】(1)因为M为棱AC的中点,且AB=BC,所以BM⊥AC,又因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥平面ABC因为BM⊂平面ABC,所以AA1⊥BM又因为AC,A1A⊂平面ACC1A1且AC∩A1A=A,所以BM⊥平面ACC1A1因为BM⊂平面BMN,所以:平面BMN⊥平面ACC1A1(2)取BC的中点P,连接B1P和MP,因为M、P为棱AC、BC的中点,所以MP∥AB,且MPAB,因为ABC﹣A1B1C1是直三棱柱,所以A1B1∥AB,A1B1=AB因为N为棱A1B1的中点,所以B1N∥BA,且B1NBA;所以B1N∥PM,且B1N=PM;所以MNB1P是平行四边形,所以MN∥PB1又因为MN⊄平面BCC,PB1⊂平面BCC1B1所以MN∥平面BCC1B1【点睛】本题考查证明面面垂直与线面平行,掌握它们的判定定理是解题关键.立体几何证明中,要由定理得出结论,必须满足定理的所有条件,缺一不可.有些不明显的结论需要证明,明显的结论也要列举出来,否则证明过程不完整18、(1);(2).【解析】(1)利用指数幂的运算性质计算即可;(2)利用对数的运算性质计算即可.【小问1详解】原式;【小问2详解】原式19、(1)见解析;(2).【解析】(1)直接利用诱导公式化简即可;(2)由求出,代入即可求解.【详解】(1)(2)因为为第二象限角,且,所以,所以.20、(1);(2).【解析】(1)要使有意义,则即,要使有意义,则即求交集即可求函数的定义域;(2)实数,且,所以即可得出的取值范围.试题解析:(1)要使有意义,则即要使有意义,则即所以的定义域.(2)由(1)可得:即所以,故的取值范围是21、(1);(2);;(3).【解析】(1)根据给定函数图象依次求出,再代入作答.(2)由(1)的结论结合正弦函数的性质求解作答.(3)在的条件下,求出(1)中函数的相位范围

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论