




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市华东师范大学第一附属中学2025届数学高二上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.魏晋时期数学家刘徽首创割圆术,他在《九章算术》方田章圆田术中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是注述中所用的割圆术是一种无限与有限的转化过程,比如在正数中的“”代表无限次重复,设,则可以利用方程求得,类似地可得到正数()A.2 B.3C. D.2.已知中,内角所对的边分别,若,,,则()A. B.C. D.3.顶点在原点,关于轴对称,并且经过点的抛物线方程为()A. B.C. D.4.直线且的倾斜角为()A. B.C. D.5.已知双曲线的渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.46.已知等差数列满足,,数列满足,记数列的前n项和为,若对于任意的,,不等式恒成立,则实数t的取值范围为()A. B.C. D.7.已知函数的导函数的图像如图所示,则下列判断正确的是()A.在区间上,函数增函数 B.在区间上,函数是减函数C.为函数的极小值点 D.2为函数的极大值点8.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.729.已知平面的一个法向量为=(2,-2,4),=(-1,1,-2),则AB所在直线l与平面的位置关系为()A.l⊥ B.C.l与相交但不垂直 D.l∥10.在空间直角坐标系中,,,若∥,则x的值为()A.3 B.6C.5 D.411.下列命题中正确的是()A.抛物线的焦点坐标为B.抛物线的准线方程为x=−1C.抛物线的图象关于x轴对称D.抛物线的图象关于y轴对称12.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内有极小值点()A.个 B.个C.个 D.个二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,则的最小值为___________14.已知函数,则___________.15.在中.若成公比为的等比数列,则____________16.秦九韶出生于普州(今资阳市安岳县),是我国南宋时期伟大的数学家,他创立的秦九韶算法历来为人称道,其本质是将一个次多项式写成个一次式相组合的形式,如可将写成,由此可得__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在如图所示的几何体中,四边形是正方形,四边形是梯形,,,平面平面,且(1)求证:平面;(2)求平面与平面夹角的余弦值18.(12分)设数列的前项和为,且.(1)求数列的通项公式;(2)记,求数列的前项和为.19.(12分)函数.(1)当时,解不等式;(2)若不等式对任意恒成立,求实数a的取值范围.20.(12分)公差不为零的等差数列中,已知其前n项和为,若,且成等比数列(1)求数列的通项;(2)当时,求数列的前n和21.(12分)如图,在四面体ABCD中,,平面ABC,点M为棱AB的中点,,(1)证明:;(2)求平面BCD和平面DCM夹角的余弦值22.(10分)(1)已知集合,.:,:,并且是的充分条件,求实数的取值范围(2)已知:,,:,,若为假命题,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设,则,解方程可得结果.【详解】设,则且,所以,所以,所以,所以或(舍).所以.故选:A【点睛】关键点点睛:设是解题关键.2、B【解析】利用正弦定理可直接求得结果.【详解】在中,由正弦定理得:.故选:B.3、C【解析】根据题意,设抛物线的方程为,进而待定系数求解即可.【详解】解:由题,设抛物线的方程为,因为在抛物线上,所以,解得,即所求抛物线方程为故选:C4、C【解析】由直线方程可知其斜率,根据斜率和倾斜角关系可得结果.【详解】直线方程可化为:,直线的斜率,直线的倾斜角为.故选:C.5、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.6、B【解析】由等差数列基本量法求出通项公式,用裂项相消法求得,求出的最大值,然后利用关于的不等式是一次不等式列出满足的不等关系求得其范围【详解】设等差数列公差为,则由已知得,解得,∴,,∴,易知数列是递增数列,且,∴若对于任意的,,不等式恒成立,即,又,∴,解得或故选:B【点睛】本题考查求等差数列的通项公式,考查裂项相消法求数列的和,考查不等式恒成立问题,解题关键是掌握不等式恒成立问题的转化与化归思想,不等式恒成立首先转化为求数列的单调性与最值,其次转化为一次不等式恒成立7、D【解析】根据导函数与原函数的关系可求解.【详解】对于A,在区间,,故A不正确;对于B,在区间,,故B不正确;对于C、D,由图可知在区间上单调递增,在区间上单调递减,且,所以为函数的极大值点,故C不正确,D正确.故选:D8、C【解析】利用等差数列的求和公式结合角标和定理即可求解.【详解】解:等差数列中,所以等差数列的前6项之和为:故选:C.9、A【解析】由向量与平面法向量的关系判断直线与平面的位置关系【详解】因为,所以,所以故选:A10、D【解析】依题意可得,即可得到方程组,解得即可;【详解】解:依题意,即,所以,解得故选:D11、C【解析】根据抛物线的性质逐项分析可得答案.【详解】抛物线的焦点坐标为,故A错误;抛物线的准线方程为,故B错误;抛物线的图象关于x轴对称,故C正确,D错误;故选:C.12、A【解析】利用极小值的定义判断可得出结论.【详解】由导函数在区间内的图象可知,函数在内的图象与轴有四个公共点,在从左到右第一个点处导数左正右负,在从左到右第二个点处导数左负右正,在从左到右第三个点处导数左正右正,在从左到右第四个点处导数左正右负,所以函数在开区间内的极小值点有个,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、25【解析】根据,,且,由,利用基本不等式求解.【详解】因为,,且,所以,当且仅当,即时,等号成立,所以的最小值为25,故答案为:2514、【解析】先求导数,代入可得.【详解】因为所以,则,故.故答案为:15、【解析】由条件可得,即,由余弦定理可得答案.【详解】由成公比为的等比数列,即由正弦定理可知所以故答案为:16、【解析】利用代入法进行求解即可.【详解】故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)先利用正方形和梯形的性质证明线面平行,然后再根据线面平行证明面面平行即可(2)根据题意建立空间直角坐标系,写出相关点的坐标和相关的向量,然后分别求出平面与平面的一个法向量,最后求出平面与平面夹角的余弦值【小问1详解】四边形是正方形,可得:又平面,平面则有:平面四边形是梯形,可得:又平面,平面则有:平面又故平面平面【小问2详解】依题意知两两垂直,故以为原点,所在的直线分别为轴、轴、轴,建立如图所示的空间直角坐标系.则有:,,,可得:,,设平面的一个法向量,则有:取,可得:设平面的一个法向量,则有:取,可得:设平面与平面的夹角为,则故平面与平面夹角的余弦值为18、(1);(2).【解析】(1)利用可求得结果;(2)由(1)可得,利用裂项相消法可求得结果.【小问1详解】当时,;当时,,;经检验:满足;综上所述:.【小问2详解】由(1)得:,.19、(1);(2).【解析】(1)由题设,原不等式等价于,分类讨论即可得出结论;(2)不等式对任意恒成立,即,即可求实数a的取值范围.【详解】(1)当时,原不等式等价于,当时,,解得,即;当时,恒成立,即;当时,,解得,即;综上,不等式的解集为;(2),,即或,解得,∴a取值范围是.20、(1)(2)【解析】(1)根据等差数列的性质,结合题意,可求得值,根据成等比数列,即可求得d值,代入等差数列通项公式,即可得答案;(2)由(1)可求得,即可得表达式,根据裂项相消求和法,即可得答案.【小问1详解】设等差数列的公差为,由等差数列性质可得,解得,又成等比数列,所以,整理得,因为,所以,所以【小问2详解】由(1)可得,则,所以,所以21、(1)证明见解析(2)【解析】(1)根据题意,利用线面垂直的判定定理证明平面ABD即可;(2)以A为原点,分别以,,方向为x轴,y轴,z轴的正方向的空间直角坐标系,分别求得平面BCD的一个法向量和平面DCM的一个法向量,然后由求解【小问1详解】证明:∵平面ABC,∴,又,,∴平面ABD,∴【小问2详解】如图,以A为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系,则,,,,,依题意,可得,设为平面BCD的一个法向量,则,不妨令,可得设为平面DCM的一个法向量,则,不妨令,可得,所以所以平面BCD和平面DCM的夹角的余弦值为22、(1);(2)【解析】(1)由二次函数的性质,求得,又由,求得集合,根据命题是命题的充分条件,所以,列出不等式,即可求解(2)依题意知,均为假命题,分别求得实数的取值范围,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025个人借款合同(个体之间)
- 大自学疗法的护理
- 2025广告公司合作协议合同
- 2025版物业管理委托合同
- 2025房屋租赁居间合同
- 2025企业办公环境维护员合同书参考式样
- 2025工程合同范本
- 危重病人护理持续改进
- 2025年华东南地区产品代理合同书(合同版本)
- 体育用品智能体育器材设计与生产方案
- 中级微观经济学(袁正教授)第四讲、斯勒茨基
- 人教版语文选修《西游记》课件
- 学校膳食管理委员会组织及工作职责
- 广西壮族自治区工程造价综合定额答疑汇编2022年11月更新
- 中国教育学会教育科研规划课题结题报告格式(参考)doc
- 机动车驾驶员培训机构质量信誉考核评分表doc-附件1
- (完整word)苏教八年级初二下册英语单词默写表
- 城市规划原理课件(完整版)
- 民法案例分析教程(第五版)完整版课件全套ppt教学教程最全电子教案
- DBJ03-107-2019 房屋建筑和市政工程施工危险性较大的分部分项工程安全管理规范
- 家长类型分析及沟通技巧
评论
0/150
提交评论