清洁氢生产路径报告2024-99正式版-WN8_第1页
清洁氢生产路径报告2024-99正式版-WN8_第2页
清洁氢生产路径报告2024-99正式版-WN8_第3页
清洁氢生产路径报告2024-99正式版-WN8_第4页
清洁氢生产路径报告2024-99正式版-WN8_第5页
已阅读5页,还剩94页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CLEANHYDROGENPRODUCTIONPATHWAYSREPORT2024hydrogeneurope.euThis

report

has

been

prepared

by

the

Hydrogen

Europe

Secretariat;

thestatements

contained

herein

reflect

the

views

of

the

Hydrogen

Europe

Secretariatand

not

of

Hydrogen

Europe

members.

It

is

being

provided

for

general

informationonly.The

information

contained

in

this

report

is

derived

from

selected

public

andprivate

sources.

Hydrogen

Europe,

in

providing

the

information,

believes

that

theinformation

it

uses

comes

from

reliable

sources

but

does

not

guarantee

theaccuracy

or

completeness

of

this

information.

Hydrogen

Europe

assumes

noobligation

to

update

any

information

contained

herein.

That

information

issubject

to

change

without

notice,

and

nothing

in

this

document

shall

beconstrued

as

such

a

guarantee.DISCLAIMERANDThis

report

does

not

constitute

technical,

investment,

legal,

tax,

or

any

otheradvice.

Hydrogen

Europe

will

not

be

held

liable

for

any

direct

or

indirect

damageincurred

using

the

information

provided

and

will

not

give

any

indemnities.

Thispublication

and

any

map

included

herein

are

without

prejudice

to

the

status

of

orsovereignty

over

any

territory,

to

the

delimitation

of

international

frontiers

andboundaries

and

the

name

of

any

territory,

city,

or

area.ACKNOWLEDGEMENTHydrogen

Europe

would

like

to

thank

all

members

of

Hydrogen

Europe

who

havecontributed

their

time

and

expertise

to

making

of

this

report.Mainauthors:Matus

Muron,

Grzegorz

Pawelec,

Daniel

FrailePictures

copyright:

Hydrogen

Europe

(pgs.

1,

19),

Canva

(pgs.

37,

47,

58)

and

JustinJin

for

Hydrogen

Europe

(pg.

68).EXECUTIVESUMMARYVariouscleanhydrogenproductiontechnologieswillbeneededforsufficientvolumesforNetZeroby2050ExecutiveSummary•••BNEF’s

NewEnergyOutlookestimates34Mtand54Mtofcleanhydrogenby2040and2050respectivelytoachieveNetZeroinEuropeby2050.FigureA:HydrogenconsumptionrequiredforEuropetoachieveNetZeroby2050vs2024Europeanwaterelectrolysiscapacity60504030201055Achievingthosevolumesrequiresamassivescaleupfromaround0.05Mtofcleanhydrogenproductioncapacityviawaterelectrolysysinoperationcurrently(June2024).Whilewaterelectrolysishasasignificantcostreductionpotentialandoffersimportantbenefitsfromawiderenergysystemperspective–includingthepossiblityforcouplingofthegasandelectricitysectors-thussupportinganincreasedpenetrationofrenewableenergyintheenergysystem,othertechnologiesbesideswaterelectrolysiscanalsoproducecleanhydrogenandcontributetoachievingNetZeroby2050inEurope.Thisisespeciallycrucialforregionsweresupplyofrenewableenergyiseitherscarceorexpensive.3414••Theseincludereformingwithcarboncapture,methanesplitting,biowaste-to-hydrogen,andnon-biologicalwaste-to-hydrogen.0.050Eachcleanhydrogenproductionpathwayshasitsuniquebenefitsandchallengesrelatedto2024waterelectrolysiscapacity2030demandfor2040demandfor2050demandforNetZeroNetZeroNetZeroscale,feedstock,GHGintensity,costs,infrastructurerequirements,andregulatorytreatment.5Source:HydrogenEurope,BNEFDifferentproductionpathwaysofferuniquebenefitsfromsectorcouplingtolocallybaseddecarbonisationExecutiveSummaryFigureB:UniquetechnologybenefitsofthefivecleanhydrogenproductionpathwaysincludedinthereportReformingwithcarboncaptureMethanesplittingBiowaste-to-hydrogenNon-biologicalWaterwaste-to-hydrogenelectrolysisMainfeedstockorenergyinputElectricityNaturalgasNaturalgasBiowasteNon-biowasteReformingwithcarboncaptureTechnologyWaterelectrolysisPyrolysisGasification/pyrolysisGasification/pyrolysis-Couplingelectricityandgassectors-Gridflexibility-Largescale-Utilisingavailablelocalbiowastefeedstocks;-Largescalepotential;-Availabilityoflocalnon-recyclablewaste;-Availablefeedstocksupply-Availablefeedstocksupply-Deliveringrenewableelectricitytohardtoelectrifysectors-Abatingotherwiseunabatedemissions;-Carbonremovalpotential;Uniquetechnologybenefits-Maturetechnologyallowsrapiddeliveryoflow-carbon-Zerodirect-Promotinglocallybasedemissionswithoutneedforadditionalinfrastructure-Supplyofsolidcarbon.decarbonisation-Contributiontowastemanagement-Unleashinghydrogenforstrandedrenewableenergyandtransportitbetweenregions-Promotinglocallybaseddecarbonisationdecarbonisation6MostoftheassessedproductiontechnologiesareavailableandatorclosetocommercialisationExecutiveSummaryFigureC:TechnologyreadinesslevelanddeploymentofthefivecleanhydrogenproductionpathwaysincludedinthereportReformingwithcarboncaptureMethanesplittingBiowaste-to-hydrogenNon-biologicalWaterwaste-to-hydrogenelectrolysisTechnologyLowtemperature:9Hightemperature:86-986-86-8readinesslevelCommercialplantintheUSandLowtemperature:~2.5GWel;Nolarge-scaleATRwithhighcarboncaptureratehasDemonstrationplantsscalinguptocommercialsizesDemonstrationplantsscalinguptocommercialsizesCurrentglobaldeploymentdemonstrationplantsinEurope,Australia,etc.Hightemperature:<50MWelbeendeployedLT:440GWelannouncedby2030HT:3GWelVariouscommercialplansbutwellbelow100,000tonnes/yperplant14Mt/yearannouncedgloballyby2030GlobalprojectsCommercialprojectsindevelopmentCommercialprojectsindevelopmentsanddeploymentannouncedby2030Technologyreadinesslevels:TRL6–

Pilotdemonstration,TRL7–

Fullscalesystemdemonstrationinoperationalenvironment,TRL8-Experimentedindeploymentconditionsandsystemcomplete,TRL9-Commercial7Cleanhydrogenproductioncostsarebetween1.7and10.2EUR/kg.WaterelectrolysisismostexpensivepathwaytodaybutpresentslargestcostreductionpotentialExecutiveSummary•Waterelectrolysis–

whilebestlocationswithaccesstolow-costelectricitycanpresentastrongbusinesscase,inmostcases,costsaretoohighandFID’s

areoftenconditionalontheprojectreceiveingsubsidies.However,sincecostsaremostlydrivenbyrenewableelectricitycostsandCAPEX–

bothofwhichareexpectedtofall,waterelectrolysisalsohasthelargestcostreductionpotentialamongtheanalysedtechnologies.FigureD:RangeofLCOHshowninthereportusingsensitivityassumptionsHighcostdecreasepotentialMediumcostdecreasepotential111098765432•Reformingwithcarboncaptureisamongthemostcostcompetitive,andwithnaturalgascosts(thelargestcostdriver)stillabovepre-warlevels,itscostcouldfallfurther.ThereishoweversignificantuncertaintyoverCO2storageandtransportationcosts.SincegasreformingisarelativelymaturetechnologyCAPEXisunlikelytofalldown.••Formethanesplitting,naturalgascostsarealsothelargestcostdriver,butsolidcarbonby-productrevenuesallowtoreducethefinalLCOHby34%.10Non-biologicalReformingwithcarboncaptureLTwaterHTwaterMethanesplittingBiowaste-to-hydrogenIncaseofbothwaste-to-hydrogentechnologiesCAPEXisthelargestcostdriverandhassignificantpotentialtodecrease.Thebusinesscaseisalsodrivenbyfeedstocktypecost/revenue,by-productrevenues,andCO2transportationandstoragecosts,allofwhichareveryprojectspecific.However,limiteddeploymentsofarcreatescostuncertainty.waste-to-hydrogenelectrolysiselectrolysisBasecaseLCOHsensitivityrangeNote:LCOHstandsforLevelizedCostofHydrogen8AllanalysedproductionpathwayscanhaveasubstantialpositivecontributiontowardsclimatechangemitigationExecutiveSummaryFigureE:Emissionintensityrangeforanalysedtechnologies(kgCO2eq/kgH2)•Allofthepathwayscanproducehydrogenwithacarbonintensitybelow3.4kgCO2/kgH2–

inlinewithEUsustainablefinancetaxonomyandtheFit-for-55packagedefinitionsoflowcarbonfuels.20151050-5-10-15-20Greyhydrogen••Incaseswherethefeedstockiseitherwasteorbiomass,thecarbonfootprintcanevenbenegativeresultinginnetcarbonremoval.Ontheotherhandhowever,forsomepathwaystheemissionintensitycanbesignificant–

evenexceedingemissionsfromunabatednaturalgasreforming(i.e.greyhydrogen).Exampleofthisincludewaterelectrolysisusingfossil-fuel-basedelectricityorreformingofnaturalgaswithoutachievingahigh-enoughcarboncapturerate,orwhenusingnatualgassourcewithhighupstreamemissions(e.g.importedLNG).Itisthereforeofutmostimportancetodesignastrongregulatoryframework,whichwouldpromotesustainablesolutions,while,atthesametime,notcreateRFNBOLow-carbonfuelsBiofuelsRCFsLow-carbonfuelsunnecessaryinvestmentbarriers–ashashappenedwithrenewableelectrolytichydrogen.•Unfortunately,forlow-carbonhydrogen,whichwillbeanessentialpartoftheemerginghydrogeneconomy,theGHGaccountingframeworkisstillmissing.Renew-ableLow-carbonNaturalGasBiomassWasteBy-product-electricityelectricity9Atthecurrentstateofmarketandtechnologydevelopment,hydrogenproductionpathwaysbasedonnaturalgasofferthelowestcostofdecarbonisationExecutiveSummary•Assuminghydrogenwouldbeusedtoreplacegreyhydrogen,eachkgwoulddisplacearound11.3kgofCO2(94.2gCO2/MJ),theestimatedcostsofproducinglow-carbonhydrogenthroughvariouspathwayscombinedwiththecarbonintensityofthoseproductionpatwhaysallowstoestimatethecostofdecarbonisation.FigureF:Costofdecarbonisation(replacementofgreyhydrogen)viaanalysedhydrogentechnologies(inEUR/tCO2)7006005004003002001000LCOHsensitivityBasecase•Withthecurrentgreyhydrogenproductioncostsataround3.3EUR/kg,andEUApricesataround80EUR/t,thepathwaywiththelowestbreak-evenpointismethanesplitting,whichwouldrequireonlyadditional20EUR/tCO2,followedbyreformingofnaturalgaswithCCSataround80EUR/tCO2.Inotherwords,iftheETSmarketpriceswoulddouble,bothofthesetechnologieswouldbefinanciallyprofitablewithoutanysubsidies.••Waste-to-hydrogentechnologiespresentdecarbonisationcostsofaround120-180EUR/tCO2.ThemostexpensivepathwaysatthemomentarewaterelectrolysiswithCO2abatementcostsfrom180EUR/tCO2uptomorethan600EUR/tCO2.Ifhydrogenwouldbeusedasatranportfuel,theGHGsavingswouldbesimilartothoseresultingfromreplacinggreyhydrogen(94gCO2/MJasdefinedinRED).Howeverinsomeapplications,thepotentialemissionsavingscouldbeevenhigher,forexamplereplacingcokeinconventionalsteelmakingwouldallowtodisplacearound26kgCO2foreachkgofhydrogen.LTwaterHTwaterReformingwithcarboncaptureMethanesplittingBiowaste-to-Non-biologicalelectrolysiselectrolysishydrogenwaste-to-hydrogenNote:thecostofdecarbonisationhasbeenestimatedassumingthefollowingemissionintensities:0gCO2/MJforRFNBO,25.5gCO2/MJ(~3.06kgCO2/kgH2)forreformingwithcarboncapture-assuming95%CO2capturerateandgasupstreamemissionfactorof9.7gCO2/MJ,19.2gCO2/MJ(~2.3kgCO2/kgH2)formethanesplitting,15gCO2/MJ(~1.8kgCO2/kgH2)forbiowaste-to-hydrogenwithoutCCSand-45.8gCO2/MJ(~-5.5kgCO2/kgH2)fornon-biologicalwaste-to-hydrogenwithCCS.Detailedcaclulationsarepresentedthroughoutthereport.Source:HydrogenEurope10Inordertounlocktheneededeconomiesofscale,RFNBOhydrogeniscurrentlyprioritisedbyEUpolicyandfundingschemesExecutiveSummaryFigureG:CategoriesofhydrogenandtheircompatibilitywithvariousregulatorytargetsdefinedintheFit-for-55packageREDtransporttargetsREDRefuelEUAviationFuelEUMaritimetargets••RFNBOhydrogenisclearlyprioritisedundertheFit-for-55packagewithanumberofmultipliersputinplacetoincreaseRFNBOattractivenesstoinvestorsversusotheroptions.ItiseligibleforcompliancewithallsustainabilitytargetsputinplacebytheGreenDeal,withseveraltargetsdesignedexclusivelyforRFNBOs.industrytargetstargetsSynthetic5.5%sub-SAFOverallREStargetGHGreductiontargetaviationfuelsRFNBOGHGreductiontarget1%RFNBOtargettargetwithadvancedbiofuels42%RFNBOtarget(1%by2030)(6%by2030)(29%)(1.2%by2030)x2multiplierX2Bio-basedhydrogen,whichcouldbeclassifiedasanadvancedbiofuel(i.e.producedfromwastebio-feedstock),isalsoincludedinthe5.5%transporttargetfor2030oftheRED3(togetherwithRFNBOs).Otherwise,therearenootherpolicymeasurestargetingexplicitlythesupplyofbio-hydrogen.Hydrogenproducedfromcrop-basedbiomassfeedstock,isexcludedfromthepoliciestargetingdecarbonisationoftheaviationandmaritimetransportsectors.RFNBOx1.5multiplierforaviationandmaritimeYESYESYESNONOYESNONONOYESNONONOYESNONOYESYESNONOYESYESYESNONONONONONOmultiplieruntil2033Bio-hydrogen(advanced)Bio-NONONONONONOYESNONONONONOYESYESNOYESYESYESYEShydrogen(1stgen)(limited)Low-carbonNONO•Othertypesofsustainablehydrogen,whileeligibleforreachinggeneraldecarbonisationtargetsacrossallpolicies,donotenjoyanyexplicittargets–

puttingthematadisadvantagecomparedtoRFNBOs.Theonlyexceptionisthelow-carbonandnon-fossilhydrogen,whichiseligibleforsyntheticaviationfuelstargetunderRefuelEUAviation.NO(butcanLow-carbonnon-fossilreducethetarget)YES(iftheMSchosestodoso)YES(iftheMSchosestodosoRCFNONO(butreduces•By-producthydrogenuseisexemptedfromhavingtobereplacedbyRFNBOsifusedinindustrialapplications(asdefinedintheRED3industrytarget).By-productYES(iflow-carbon)YES(iflow-carbon)YES(iflow-carbon)NOthetarget)11DifferentpathwayscanbecomplementaryastheyencounterdifferentchallengesExecutiveSummaryFigureH:KeychallengesassociatedtoeachproductionpathwayFeedstock/energyTechnologyreadinessavailabilityInfrastructureScalabilityLCOHWaterLimitedbyavailablerenewableelectricityandisgrapplingwithcostcompetitivenessatthisdeploymentstageelectrolysisReformingwithRelianceonnaturalgassupplyandCO2carboncaptureinfrastructure(transportandstorage)limitingitsgeographicalpotentialMethanesplittingLowLCOHdependsonsolidcarbonrevenuesandavailabilityanduseofgasinfrastructurecouldcontributetoafossillockinBiowaste-to-hydrogenDespitemodularity,issuestoscaletoindustrialsize(100,000t/year)duetolocalbiomassavailability.PotentialfuturecomparisonwithotherfuturebiomassusesNon-biologicalRelianceonCO2transportandstoragewaste-to-hydrogeninfrastructure;despitemodularity,issuestoscaletoindustrialsize(100,000t/year)ChallengeNosignificantchallengeMinorchallenge12ThedeploymentofcleanhydrogentechnologiesisheldbackbypersistingregulatorybarriersandthelackofaframeworkforcalculatingGHGemissionsExecutiveSummaryFigureI:MostpressingregulatoryissuesaffectinghydrogenproductiontechnologiesTemporal•••Alltechnologiescanhaveasignificantpositivecontributiontowardsclimatechangemitigation,butsignificantregulatorybarriersaredelayingtheirdeployment.RenewableenergycorrelationadditionalityrequirementrequirementLowcarbonLT/HTElectrolysisUncertaintyontheuseofwasteheatelectricityPPAframeworkOneofthemostpressingissuesisthelackofGHGcalculationrulesforlow-carbonhydrogen,whichGasLimitedMaximummethaneupstreamemissionsReformingwithCCMethanesplittingBiowaste-to-hydrogenregulatoryisacross-cuttingissueimpactingmostleakageratedemandpathways.Norecognitionofpre-combustionAllocationofemissionstoNofreeUncertaintyregardingthepossibilityofsourcinglow-carbonelectricityforwaterelectrolysisaswellaccountingforgasupstreamemissionsaretwokeyissuesrequiringurgentclarification.Methanesplittinginparticular,facesanumberofregulatorychallengesandrisks,bothlinkedtotheuncertaintyaboutlow-carbonfuelsDAandalsotothetreatmentofthesolidcarbonby-product.allowancesforGasupstreamcarboncaptureco-productssolidcarbonemissionsLimitedregulatoryMaximummethaneleakageratedemandLimitedNofreerecognitionofLimitedallowancespre-combustioncarboncaptureregulatoryforsolidcarbondemand••Hence,thenewGHGaccountingrules,containedintheupcomingDelegatedAct(DA)arecrucial,andtheirsimplicityandspeedyadoptionisessentialfortheentirehydrogensector–

asisensuringtheirconsistencywithexistingrulesforRFNBOandRCFs.NofreeNorecognitionofLimitedNon-biologicalwaste-to-hydrogenallowancespre-combustionregulatoryforsolidcarboncarboncapturedemandUseofby-productAllocationofemissionstoMissingframeworkforextractinghydrogentocircumventOtherForRFNBOproduction,thestricttemporalcorrelationandadditionalityrulescontinuetobeasignificantcostobstaclelimitingitsuptake.REDtargetsco-productsnaturalhydrogenImpactonbusinesscase13Therearemanyotherpathwaysforsustainablehydrogenproduction,withsolarthermochemicalcyclesandnaturalhydrogenamongthemostpromisingExecutiveSummaryFigureJ:keyfeaturesofotherhydrogenproductionpathwaysLPGpyrolysisSolarthermochemical–

Outside

of

natural

gas,

propane

can

also

be

used

as

the

raw

material

for–

Solar

thermochemical

processes

are

currently

at

a

relatively

early

stage

oftechnological

readiness

level

however,

by

allowing

to

use

the

full

spectrumof

solar

radiation,

these

technologies

could

deliver

abundant

and

low-costrenewable

hydrogen

in

the

future.–

Reduction

of

the

amount

of

electrical

power

required

compared

to

waterelectrolysis

together

with

cost

reduction

of

solar

technologies

is

expected

toreduce

the

LCOH

to

2-3

USD/kg.–

Concentrated

solar

thermal

system

have

comparatively

low

greenhousegas

emissions

over

their

entire

life

cycle

compared

to

other

non-fossilenergy

provision

technologies.obtaining

CO2-free

hydrogen

via

catalytic

pyrolysis.–

LPG

is

especially

attractive

as

a

feedstock

in

areas

without

access

to

naturalgas

network.–

The

yield

of

valuable

solid-carbon

by-product

is

also

significantly

higher,with

a

C:H

ratio

of

4.5

compared

to

3.0

for

methane

splitting.–

Even

using

fossil

LPG

(obtained

from

natural

gas

extraction

process)

theestimated

emission

intensity

of

hydrogen

would

be

below

the

required

low-carbon

emission

threshold.

This

could

be

further

reduced

ifsustainable

feedstock

would

be

used,

e.g.

bio-LPG

or

e-LPG.a

moreNaturalhydrogenBy-product–

Hydrogen

formed

by

natural

processes

could

be

a

breakthrough

renewable–

Hydrogen

produced

as

a

by-product

of

other

industrial

processes

is

animportant

source

of

hydrogen

in

the

current

economy,

supplying

around

athird

of

all

hydrogen

used

by

the

European

industry.–

While

by-product

hydrogen

from

some

sources

can

be

considered

low-carbon,

any

environmental

benefits

from

its

use

would

be

lost

if

it

would

bereplaced

by

natural

gas

or

other

fossil

fuels

in

its

existing

applications.–

Furthermore,

as

by-product

hydrogen

is

exempted

from

the

RED

industrytargets,

special

effort

should

be

made

to

avoid

it

is

used

to

decreaseinvestments

into

RFNBOs.resource.–

Unlike

fossil

energies,

natural

H2

is

a

sustainable

source

of

energy,

with

aconstant

replenishment

of

the

water

percolating

and

reacting

with

rock.–

A

recent

study

from

United

States

Geological

Survey

estimates

that

10’s

ofmillions

of

tonnes

of

natural

hydrogen

are

generated

worldwide.–

Its

attractiveness

lies

also

with

both

very

competitive

extraction

costs

(0.5-2.5

EUR/kg)

as

well

as

very

low

environmental

footprint

(0.4-1.5

tCO2/tH2).–

The

full

potential

still

needs

to

be

evaluated

and

the

necessary

regulatoryframework

for

its

extraction

is

mostly

missing.14INTRODUCTIONANDMETHODOLOGYObjectivesandscopeIntroductionandMethodology–

Bring

attention

to

a

range

of

different

hydrogen

production

pathways

and

the

drivers

for

their

costs

and

emissionsWhy?–

Provide

public

points

of

reference

for

costs

and

emissions

assumptions–

Support

the

policy

debate

regarding

low-carbon

hydrogen

delegated

act–

Electrolysis

(low

and

high-temperature)–

Reforming

with

carbon

capture

(SMR/ATR

with

CCS)Technologicalscope–

Methane

splitting

(pyrolysis

of

methane)–

Biowaste-to-hydrogen

(pyrolysis/gasification

of

woody

biowaste)–

Non-biological

waste-to-hydrogen

(pyrolysis/gasification

of

non-recyclable

plastic

waste)–

Unique

technology

benefits–

Technology

readiness

and

current

deployment–

Productions

costs

and

cost

drivers–

Emissions

intensity

of

the

produced

hydrogen–

Scalability

challengesEachchapter’scontents–

Policy

and

regulatory

issues16CostanalysisisbasedontheLevelizedCostofHydrogen(LCOH)approachwithauniformsetofassumptionstoensurecomparabilityIntroductionandMethodologyLevelisedcostapproach:Theproductioncostanalysisforvarioustechnologiesisbasedonalevelizedcostapproach,whereallexpenditures(bothCAPEXandOPEX)aswellasrevenuesfromco-productsandETS(ifapplicable)arediscountedusingadiscountratereflectingtheaverageriskofhydrogenproductionprojects,usingthefollowingformula:FigureK:Assumedpricesofkeycommoditiesin2024KeyitemUnitValue40.067.7NaturalgaspriceEUR/MWhEUR/MWhEUR/MWhEUR/MWhEUR/MWhEUR/MWhEUR/tBiogasprice퐼

+

+

퐶푂2

푅퐼0

+

σ푛푡=1푡푡푡푡푡WholesaleelectricitypriceRenewablePPA(15years)NuclearPPA80.060.080.029.3ꢀ

+

푡퐻2푡σ푛푡=1

+

푡Where:Where,I0-investmentexpenditureinyear0;I–

replacementinvestments(e.g.stackreplacementcosts);E–tPowernetworkfeesandtaxesETSEUAtenergyinputscosts,M-otheroperationalandmaintenancecosts;CO2–

balanceorrevenuesandcostsfromtt80.0100.0participationintheETSsystemandcapturedCO2transportandstoragecosts,R–

revenuesfromsalesofby-products;H2tt–

hydrogenproduction;r-Discountrate;n-Lifetimeofthesysteminyears.CO2transportationandstorageEUR/tImportantcaveats:Inordertoallowacomparativeanalysis,alltechnologieswereevaluatedunderasimilarsetofassumptionswithregardstoboundaryconditionsandcommoditypriceassumptions(seetableontheright).Allcommoditypriceshavebeenadoptedattheirrecentlevelswithoutmakinganyforecastsontheirfuturedevelopment–

hencethepresentedcostdatadoesnotfullyreflectexpectedchangesincostsofsomepathways.Thecostsincludeonlycostsofproduction(well-to-gate)andexcludeadditionalexpensesrelatedtohydrogenstorageand/ordeliveryofhydrogentofinalconsumers,whichinsomecasesmightobscuretheultimatecostcompetitivenessofvariouspathways(e.g.offgridelectrolysisinremotelocationsmightrequireadditionalh2transportationandstoragecostswhichwouldnotbepresentincaseofon-sitenaturalgasreformingwithCCS).Foralltechnologiesweuseasinglebefore-taxWACCwhichisappropriateforlargescaleenergyinvestmentsbutmightnotalwaysproperlyreflectalltherisks–

especiallyforupcominglow-TRLtechnologiesandforcountriessufferingfromhighinternalrisk.Analysishasbeendoneassumingfixedcosts(i.e.withouttakingintoaccountinflation).FigureL:Phasingin/outofCBAMandfreeallowancesforhydrogen1008060CBAMfactor40200Impactofthecarbonmarketreform:OneoftheconsequencesofreformingtheEUcarbonmarketswillbethebroadeningofthescopeofhydrogenmanufacturingcoveredbytheETS,whichwillnowincludeallinstallationsproducingmorethan5tpdofhydrogen.Allinstallationswouldalsobeeligibletoreceivefreeallowances.However,aconsequenceofincludinghydrogenintheCBAMwillbeagradualphase-outoffreeallowancesuntil2034.17Asemissionsfromfueltransportanddistributionareproject-andnottechnologyspecific,theGHGemissionsanalysiscoversonlywell-to-gateemissionsIntroductionandMethodologyScopeoftheanalysis:TheemissionintensityanalysisforeachtechnologypathwaysFigureM:BoundariesoftheGHGemissionanalysishasbeendoneonawell-to-gatebasis–

i.e.theemissionscoverscope1and2emissionsstemmingfromthesupplyofinputstothehydrogenproductionprocessaswellasthedirectprocessemissions,includingcreditsfromCO2captureandstorage.Emissionsfurtherdownstreamfromtheproductionprocess,i.e.relatedtohydrogencompression,storageortransportationtoendmarketsarehighlyprojectspecificandnotlinkedtoproductiontechnologyandarethereforenotconsideredintheanalysis.Emissionsfromthemanufacturingofequipmentandtheinvestmentprocessareexcluded–

whichisanapproachconsistentwiththeEUmethodologies(forRFNBOsaswellasintheEUtaxonomy).EmissionsweredividedintodirectandindirectwithindirectemissionscoveringGHGemissionsrelatedtosupplyofinputs(includingelectricityforwaterelectrolysis)whiledirectemissionscoverCO2emissionsstemmingdirectlyfromtheprocessingstep.FigureN:GHGemissionthresholdundervariousregulatoryandvoluntaryregimes(inkgCO2e/kgH2)Therequi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论