江西省育华学校2024届中考数学押题卷含解析_第1页
江西省育华学校2024届中考数学押题卷含解析_第2页
江西省育华学校2024届中考数学押题卷含解析_第3页
江西省育华学校2024届中考数学押题卷含解析_第4页
江西省育华学校2024届中考数学押题卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省育华学校2024届中考数学押题卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.一组数据8,3,8,6,7,8,7的众数和中位数分别是()A.8,6B.7,6C.7,8D.8,72.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为23.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107 B.9.6×106 C.96×105 D.9.6×1024.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=kx(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y25.在实数﹣3.5、2、0、﹣4中,最小的数是()A.﹣3.5 B.2 C.0 D.﹣46.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300km;②小路的车比小带的车晚出发1h,却早到1h;③小路的车出发后2.5h追上小带的车;④当小带和小路的车相距50km时,t=或t=.其中正确的结论有()A.①②③④ B.①②④C.①② D.②③④7.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC8.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是()A. B. C. D.9.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为()A.6 B.8 C.10 D.1210.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.若x,y为实数,y=,则4y﹣3x的平方根是____.12.方程的根是________.13.21世纪纳米技术将被广泛应用.纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_______米.14.如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b>mx>-2的解集为_________________.15.方程的解是__________.16.如图,在梯形中,,,点、分别是边、的中点.设,,那么向量用向量表示是________.三、解答题(共8题,共72分)17.(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?18.(8分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.19.(8分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.分别求出y1,y2与x之间的关系式;当甲、乙两个商场的收费相同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由.20.(8分)在矩形中,点在上,,⊥,垂足为.求证.若,且,求.21.(8分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.(1)画出△ABC关于直线n的对称图形△A′B′C′;(2)直线m上存在一点P,使△APB的周长最小;①在直线m上作出该点P;(保留画图痕迹)②△APB的周长的最小值为.(直接写出结果)22.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.23.(12分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.24.庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7考点:(1)众数;(2)中位数.2、A【解析】

根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.3、B【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.4、D【解析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;故选D.考点:反比例函数的性质.5、D【解析】

根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在实数﹣3.5、2、0、﹣4中,最小的数是﹣4,故选D.【点睛】掌握实数比较大小的法则6、C【解析】

观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】由图象可知A,B两城市之间的距离为300km,小带行驶的时间为5h,而小路是在小带出发1h后出发的,且用时3h,即比小带早到1h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得解得∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5h,即小路车出发1.5h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=,当100-40t=-50时,可解得t=,又当t=时,y小带=50,此时小路还没出发,当t=时,小路到达B城,y小带=250.综上可知当t的值为或或或时,两车相距50km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7、D【解析】

解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.【点睛】本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.8、A【解析】

一一对应即可.【详解】最左边有一个,中间有两个,最右边有三个,所以选A.【点睛】理解立体几何的概念是解题的关键.9、C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,,∴四边形BFED是平行四边形,∴BD=EF,∴,解得:DE=10.故选C.10、C【解析】

根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可.【详解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故选:C.【点睛】本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.二、填空题(本大题共6个小题,每小题3分,共18分)11、±【解析】∵与同时成立,∴故只有x2﹣4=0,即x=±2,又∵x﹣2≠0,∴x=﹣2,y==﹣,4y﹣3x=﹣1﹣(﹣6)=5,∴4y﹣3x的平方根是±.故答案:±.12、x=2【解析】分析:解此方程首先要把它化为我们熟悉的方程(一元二次方程),解新方程,检验是否符合题意,即可求得原方程的解.详解:据题意得:2+2x=x2,∴x2﹣2x﹣2=0,∴(x﹣2)(x+1)=0,∴x1=2,x2=﹣1.∵≥0,∴x=2.故答案为:2.点睛:本题考查了学生综合应用能力,解方程时要注意解题方法的选择,在求值时要注意解的检验.13、1.2×10﹣1.【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:12纳米=12×0.000000001米=1.2×10−1米.故答案为1.2×10−1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、-4<x<1【解析】将P(1,1)代入解析式y1=mx,先求出m的值为,将Q点纵坐标y=1代入解析式y=x,求出y1=mx的横坐标x=-4,即可由图直接求出不等式kx+b>mx>-1的解集为y1>y1>-1时,x的取值范围为-4<x<1.

故答案为-4<x<1.

点睛:本题考查了一次函数与一元一次不等式,求出函数图象的交点坐标及函数与x轴的交点坐标是解题的关键.15、x=1【解析】

将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=1,代入原方程得=2,原方程成立,故方程=2的解是x=1.故本题答案为:x=1.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.16、【解析】分析:根据梯形的中位线等于上底与下底和的一半表示出EF,然后根据向量的三角形法则解答即可.详解:∵点E、F分别是边AB、CD的中点,∴EF是梯形ABCD的中位线,FC=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法则得,=+=2+===2+.故答案为:2+.点睛:本题考查了平面向量,平面向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键,本题还考查了梯形的中位线等于上底与下底和的一半.三、解答题(共8题,共72分)17、(1)12;(2)【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.详解:(1)甲队最终获胜的概率是12(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=78点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18、(1)详见解析;(2)1+【解析】

(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【详解】(1)证明:连结.如图,与相切于点D,是的直径,即(2)解:在中,.【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.19、(1);y2=2250x;(2)甲、乙两个商场的收费相同时,所买商品为6件;(3)所买商品为5件时,应选择乙商场更优惠.【解析】试题分析:(1)由两家商场的优惠方案分别列式整理即可;(2)由收费相同,列出方程求解即可;(3)由函数解析式分别求出x=5时的函数值,即可得解试题解析:(1)当x=1时,y1=3000;当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+1.∴;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+1=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+1=2100×5+1=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所买商品为5件时,应选择乙商场更优惠.考点:一次函数的应用20、(1)证明见解析;(2)1【解析】分析:(1)利用“AAS”证△ADF≌△EAB即可得;(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.详解:(1)证明:在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF,∵DF=AB,∴AD=2AB=1.点睛:本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.21、(1)详见解析;(2)①详见解析;②.【解析】

(1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;

(2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;

②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.【详解】解:(1)如图△A′B′C′为所求图形.(2)①如图:点P为所求点.②∵△ABP的周长=AB+AP+BP=AB+AP+B''P∴当AP与PB''共线时,△APB的周长有最小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论