版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌十中2025届数学高一上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图像是连续的,根据如下对应值表:x1234567239-711-5-12-26函数在区间上的零点至少有()A.5个 B.4个C.3个 D.2个2.若函数是偶函数,则满足的实数的取值范围是A. B.C. D.3.已知,条件:,条件:,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=05.已知,,则下列说法正确的是()A. B.C. D.6.设函数,则使成立的的取值范围是A. B.C. D.7.将函数图象上的点向右平移个单位长度后得到点,若点仍在函数的图象上,则的最小值为()A. B.C. D.8.若集合,则下列选项正确的是()A. B.C. D.9.已知幂函数f(x)=xa的图象经过点P(2,),则函数y=f(x2)﹣2f(x)的最小值等于()A. B.C.1 D.﹣110.如图所示,正方体中,分别为棱的中点,则在平面内与平面平行的直线A.不存在 B.有1条C.有2条 D.有无数条二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则_________12.已知,则的大小关系是___________________.(用“”连结)13.①函数y=sin2x的单调增区间是[],(k∈Z);②函数y=tanx在它的定义域内是增函数;③函数y=|cos2x|的周期是π;④函数y=sin()是偶函数;其中正确的是____________14.16/17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即.现在已知,,则__________.15.函数在上为单调递增函数,则实数的取值范围是______16.已知,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在上的函数为常数).(1)求的奇偶性;(2)已知在上有且只有一个零点,求实数a的值.18.已知全集,集合,.(1)求;(2)若集合,且,求实数a的取值范围.19.如图,在四棱锥中,侧面底面,侧棱,底面为直角梯形,其中为中点.(1)求证:平面;(2)求异面直线与所成角的余弦值;(3)线段上是否存在,使得它到平面的距离为?若存在,求出的值.20.已知函数的图象在轴右侧的第一个最高点和第一个最低点的坐标分别为和.(1)求函数的解析式;(2)求的值21.已知函数的定义域为(1)求的定义域;(2)对于(1)中的集合,若,使得成立,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用零点存在性定理即可求解.【详解】函数的图像是连续的,;;,所以在、,之间一定有零点,即函数在区间上的零点至少有3个.故选:C2、D【解析】结合为偶函数,建立等式,利用对数计算性质,计算m值,结合单调性,建立不等式,计算x范围,即可【详解】,,,,令,则,则,当,递增,结合复合函数单调性单调递增,故偶函数在上是增函数,所以由,得,.【点睛】本道题考查了偶函数性质和函数单调性知识,结合偶函数,计算m值,利用单调性,建立关于x的不等式,即可3、C【解析】分别求两个命题下的集合,再根据集合关系判断选项.【详解】,则,,则,因为,所以是充分必要条件.故选:C4、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为5、C【解析】根据已知条件逐个分析判断【详解】对于A,因为,所以A错误,对于B,因为,所以集合A不是集合B的子集,所以B错误,对于C,因为,,所以,所以C正确,对于D,因为,,所以,所以D错误,故选:C6、A【解析】,定义域为,∵,∴函数为偶函数,当时,函数单调递增,根据偶函数性质可知:得成立,∴,∴,∴的范围为故答案为A.考点:抽象函数的不等式.【思路点晴】本题考查了偶函数的性质和利用偶函数图象的特点解决实际问题,属于基础题型,应牢记.根据函数的表达式可知函数为偶函数,根据初等函数的性质判断函数在大于零的单调性为递增,根据偶函数关于原点对称可知,距离原点越远的点,函数值越大,把可转化为,解绝对值不等式即可7、B【解析】作出函数和直线图象,根据图象,利用数形结合方法可以得到的最小值.【详解】画出函数和直线的图象如图所示,是它们的三个相邻的交点.由图可知,当在点,在点时,的值最小,易知的横坐标分别为,所以的最小值为,故选:B.8、C【解析】利用元素与集合,集合与集合的关系判断.【详解】因为集合是奇数集,所以,,,A,故选:C9、D【解析】先由已知条件求得,再利用配方法求二次函数的最值即可得解.【详解】解:已知幂函数f(x)=xa的图象经过点P(2,),则,即,所以,所以,所以y=f(x2)﹣2f(x),当且仅当,即时取等号,即函数y=f(x2)﹣2f(x)的最小值等于,故选:D.【点睛】本题考查了幂函数解析式的求法,重点考查了二次函数求最值问题,属基础题.10、D【解析】根据已知可得平面与平面相交,两平面必有唯一的交线,则在平面内与交线平行的直线都与平面平行,即可得出结论.【详解】平面与平面有公共点,由公理3知平面与平面必有过的交线,在平面内与平行的直线有无数条,且它们都不在平面内,由线面平行的判定定理可知它们都与平面平行.故选:D.【点睛】本题考查平面的基本性质、线面平行的判定,熟练掌握公理、定理是解题的关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】根据分段函数的定义即可求解.【详解】解:因为函数,所以,所以,故答案为:1.12、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.13、①④【解析】①由,解得.可得函数单调增区间;②函数在定义域内不具有单调性;③由,即可得出函数的最小正周期;④利用诱导公式可得函数,即可得出奇偶性【详解】解:①由,解得.可知:函数的单调增区间是,,,故①正确;②函数在定义域内不具有单调性,故②不正确;③,因此函数的最小正周期是,故③不正确;④函数是偶函数,故④正确其中正确的是①④故答案为:①④【点睛】本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于基础题14、2【解析】先根据要求将指数式转为对数式,作乘积运算时注意使用换底公式去计算.【详解】∵,∴,∴故答案为2【点睛】底数不同的两个对数式进行运算时,有时可以利用换底公式:将其转化为同底数的对数式进行运算.15、【解析】令∴即函数的增区间为,又函数在上为单调递增函数∴令得:,即,得到:,又∴实数的取值范围是故答案为16、【解析】把已知的两个等式两边平方作和即可求得cos(α﹣β)的值【详解】解:由已知sinα+sinβ=1①,cosα+cosβ=0②,①2+②2得:2+2cos(α﹣β)=1,∴cos(α﹣β),故答案为点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式及两角差的余弦,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)偶函数,证明见解析,(2)【解析】(1)利用定义判断函数的奇偶性;(2)利用该函数的对称性,数形结合得到实数a的值.【详解】(1)函数的定义域为R,,即,∴为偶函数,(2)y=f(x)的图象关于y轴对称,由题意知f(x)=0只有x=0这一个零点,把(0,0)代入函数表达式得:a2+2a﹣3=0,解得:a=﹣3,或a=1,当a=1时,在上单调递增,∴此时显然符合条件;当a=﹣3时,,,即,即在上存在零点,知f(x)至少有三个根,不符合所以,符合条件的实数a的值为1【点睛】本题主要考查函数零点的概念,要注意函数的零点不是点,而是函数f(x)=0时的x的值,属于中档题18、(1)(2)【解析】(1)先求出集合,再按照并集和补集计算即可;(2)先求出,再由求出a取值范围即可.【小问1详解】,,;【小问2详解】,由题得故.19、(1)见解析;(2);(3)存在,..【解析】(1)根据线面垂直的判定定理可知,只需证直线PO垂直平面ABCD中的两条相交直线垂直即可;(2)先通过平移将两条异面直线平移到同一个起点B,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp-DQC=VQ-PCD,即可得出结论试题解析:(1)证明:在中为中点,所以.又侧面底面,平面平面平面,所以平面.(2)解:连接,在直角梯形中,,有且,所以四边形是平行四边形,所以.由(1)知为锐角,所以是异面直线与所成的角,因为,在中,,所以,在中,因为,所以,在中,,所以,所以异面直线与所成的角的余弦值为.(3)解:假设存在点,使得它到平面的距离为.设,则,由(2)得,在中,,所以,由得,所以存在点满足题意,此时.20、(1);(2).【解析】(1)由已知得和,利用即可求出函数的解析式;(2)由已知得的值,代入,即可得的值试题解析:(1)解:由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 综合技术培训服务合同
- 贷款合同权益保障
- 咨询公司合同模板
- 电脑系统维护合同
- 架线施工劳务分包合同范例
- 无敌铁门防盗门购销合同
- 法律咨询服务协议格式范式
- 料场租赁合同模板
- 不锈钢水管购销合同
- 工程合同补充协议的终止规定
- 部编版小学四年级语文上册第25课《王戎不取道旁李》课件(共126张课件)
- 中学地理七年级《世界的气候类型》说课稿
- 陪诊免责协议书范本电子版
- 陈述句与反问句互改(课件)-2022-2023学年三年级语文公开课
- 《单片机原理及应用》期末复习资料
- 缩短外科手术病人术后排气时间护理品管圈QCC成果汇报课件(完整内容可编辑修改)
- 小学六年级上学期美术《废物新用》教学课件
- 2024-2030年油气管道工程产业市场深度调研及发展趋势与投资战略研究报告
- 髋关节置换术后康复
- 2024年秋季新苏教版一年级上册数学课件 期末复习 第1课时 数与运算
- 八年级生物上册 5.1动物的主要类群教案 (新版)新人教版
评论
0/150
提交评论