



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
微专题寻找球心解决与球有关的问题球的切、接问题,是历年高考的热点内容,经常以客观题出现.一般围绕球与其他几何体的内切、外接命题,考查球的体积与表面积,其关键点是确定球心.类型一定义法【例1】已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172 B.C.132 D.3C解析:如图,过球心O作平面ABC的垂线,则垂足为BC的中点M,连接AM,OA.因为AB=3,AC=4,AB⊥AC,所以BC=5.又AM=12BC=52,OM=12AA1=【例2】(2024·宣城模拟)在三棱锥P-ABC中,PA⊥平面ABC,PA=2,AB=22,AC=4,∠BAC=45˚,则三棱锥P-ABC外接球的表面积是()A.14π B.16πC.18π D.20πD解析:如图,在△ABC中,∠BAC=45˚,AB=22,AC=4,由余弦定理可得BC2=AB2+AC2-2AB·ACcos45˚=8+16-2×22×4×22=8,则BC2+AB2=AC2由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AB=A,PA,AB⊂平面PAB,所以BC⊥平面PAB.因为PB⊂平面PAB,所以BC⊥PB,所以△PBC为直角三角形.又△PAC为直角三角形,所以PC是三棱锥P-ABC外接球的直径.设O是PC的中点,即为球心,又AC=4,PA=2,所以PC=AC2所以外接球的半径为5,所求外接球的表面积S=4π×52=20π.1.到各个顶点距离相等的点为外接球的球心.2.方法:借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解.3.结论:(1)正方体或长方体的外接球的球心是其体对角线的中点;(2)棱柱的外接球的球心是上、下底面多边形外心连线的中点;(3)正棱锥的外接球球心在高线上.类型二补形法【例3】在四面体ABCD中,AB⊥BC,AB⊥AD,向量BC与AD的夹角为2π3.若AB=6,BC=AD=3,则该四面体外接球的表面积为(A.18π B.36πC.54π D.72πD解析:将四面体ABCD补成如图所示的直三棱柱ADE-BFC.因为向量BC与AD的夹角为2π3,所以∠EAD=2π在△ADE中,由余弦定理得DE2=AD2+AE2-2AD·AE·cos∠EAD=27,所以DE=33,△ADE外接圆的半径r=DE2sin该四面体外接球的半径R=32+32=32,所以该【例4】棱长为a的正四面体的体积与其内切球体积之比为________.63π显然正四面体内切球的球心O(也是外接球的球心)、△BCD的中心O1都在正方体的体对角线上.因为正四面体的棱长为a,所以|DO1|=33a,|O1A|=a2-33a21.补形法的解题策略:(1)侧面为直角三角形,或对棱均相等的模型和正四面体,可以还原到正方体或长方体中去求解;(2)将直三棱锥补成三棱柱求解.2.常用结论:(1)正方体的棱长为a,球的半径为R,若球为正方体的外接球,则2R=3a;若球为正方体的内切球,则2R=a;若球与正方体的各棱相切,则2R=2a.(2)若长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2类型三截面法【例5】(多选题)(2024·广东一模)已知正方体ABCD-A1B1C1D1的各个顶点都在表面积为3π的球面上,点P为该球面上的任意一点,则下列结论正确的是(ACD)A.有无数个点P,使得AP∥平面BDC1B.有无数个点P,使得AP⊥平面BDC1C.若点P∈平面BCC1B1,则四梭锥P-ABCD的体积的最大值为2D.若点P∈平面BCC1B1,则AP+PC1的最大值为6【例6】为庆祝国庆,某中学将举行全校师生游园活动,其中有一个游戏项目是夹弹珠.如图,四个半径都是1cm的玻璃弹珠放在一个半球面形状的容器中,每颗弹珠的顶端恰好与容器的上沿处于同一水平面,则这个容器的容积是()A.25+B.45+C.25+3D.85+B解析:分别作出四个小球和容器的正视截面图和俯视截面图,如图所示.正视截面图中小球球心B,半球球心O与切点A构成直角三角形,则有OA2+AB2=OB2.俯视截面图中,四个小球球心的连线围成正方形,正方形的中心到小球球心的距离O1A1与正视截面图中的OA相等.设半球的半径为R,已知小球半径r=1cm,所以OA=2cm,AB=1cm,OB=3cm,R=OB+r=3+因此,半球面形状的容器的容积是V=12×43πR3=12×43π×1.与球截面有关的解题策略(1)定球心:如果是内切球,球心到切点的距离相等且为半径;如果是外接球,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国红梗木行业发展研究报告001
- 2025至2030年中国立式移动手擦机行业发展研究报告001
- 2023八年级地理上册 第三章 中国的自然资源第四节 中国的海洋资源教学设计 (新版)湘教版
- 异常子宫出血护理小讲课
- Unit 3 All about me Lesson 4:What do you like to do?教学设计 2024-2025学年冀教版(2024)七年级英语上册
- 金孔雀轻轻跳 (教学设计)-2024-2025学年湘艺版(2024)音乐一年级下册
- 2024-2025年高中化学 第1章 第3节 第2课时 元素的电负性及其变化规律教学设计 鲁科版选修3
- 洗涤盆施工方案
- 精装隔断施工方案
- 安吉白茶知识分享
- 2022版义务教育(数学)课程标准(含2022年修订部分)
- 市政学-张旭霞-第四章-城市土地管理和住房管理
- 特殊教育-资源中心-职能---ppt课件
- T∕ACSC 01-2022 辅助生殖医学中心建设标准(高清最新版)
- 通力救援程序
- 1混凝土拌合站临建方案
- 桐乡市乌镇历史文化保护区保护规划
- 移交涉密载体签收单(模板)
- 城镇自来水厂运行维护质量及安全技术标准规程(共72页)
- 台湾民法典目录
- 质量管理体系五种核心工具MSA教材
评论
0/150
提交评论