版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二节平面向量的基本定理及坐标表示考试要求:1.理解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.能用坐标表示平面向量的加、减运算与数乘运算.4.理解用坐标表示的平面向量共线的条件.自查自测知识点一平面向量基本定理1.判断下列说法的正误,正确的画“√”,错误的画“×”.(1)平面内不共线的任意两个向量都可作为一个基底.(√)(2)基底中的向量可以是零向量.(×)(3)平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的.(√)(4)e1,e2是平面内两个不共线的向量,若存在实数λ,μ使得λe1+μe2=0,则λ=μ=0.(√)2.在△ABC中,点M,N满足AM=2MC,BN=NC.若MN=xAB12-16解析:如图.因为MN=MC+CN=1核心回扣平面向量基本定理条件e1,e2是同一平面内的两个不共线向量结论对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2基底若e1,e2不共线,把{e1,e2}叫做表示这一平面内所有向量的一个基底注意点:基底{e1,e2}必须是同一平面内的两个不共线向量.因为零向量平行于任意向量,所以不能作为基底中的向量.自查自测知识点二平面向量的坐标运算1.(教材改编题)设平面向量a=(-1,0),b=(0,2),则2a-3b等于()A.(6,3) B.(-2,-6)C.(2,1) D.(7,2)B解析:2a-3b=2(-1,0)-3(0,2)=(-2,-6).2.(教材改编题)已知▱ABCD的顶点A(-1,-2),B(3,-1),C(5,6),则顶点D的坐标为________.(1,5)解析:设D(x,y),则由AB=DC,得(4,1)=(5-x,6-y),即4核心回扣1.向量加法、减法、数乘运算及向量的模已知a=(x1,y1),b=(x2,y2),则有(1)a+b=(x1+x2,y1+y2);(2)a-b=(x1-x2,y1-y2);(3)λa=(λx1,λy1);(4)|a|=x12.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.(2)设A(x1,y1),B(x2,y2),则AB=(x2-x1,y2-y1),AB=自查自测知识点三平面向量共线的坐标表示若a=(6,6),b=(5,7),c=(2,4),则下列结论成立的是()A.a-c与b共线 B.b+c与a共线C.a与b-c共线 D.a+b与c共线C解析:a-c=(4,2),因为4×7-2×5=18≠0,所以a-c与b不共线;b+c=(7,11),因为7×6-11×6=-24≠0,所以b+c与a不共线;b-c=(3,3),因为3×6-3×6=0,所以a与b-c共线;a+b=(11,13),因为11×4-13×2=18≠0,所以a+b与c不共线.核心回扣1.设a=(x1,y1),b=(x2,y2),a,b共线的充要条件是x1y2-x2y1=0.2.当x2y2≠0时,a∥b等价于x1【常用结论】1.如果对于一个基底{e1,e2},有a=λ1e1+λ2e2=μ1e1+μ2e2,那么可以得到λ1=μ1,λ2=μ2,即基底给定,同一向量的分解形式唯一.特别地,若λ1e1+λ2e2=2.已知P为线段AB的中点,若A(x1,y1),B(x2,y2),则点P的坐标为x13.已知△ABC的顶点A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心G的坐标为x1应用1在△ABC中,M为AC的中点,若AB=λBM+μBC(λ,μ∈RA.λ+μ=1 B.λ-μ=3C.λ+2μ=0 D.2λ-μ=0C解析:因为M为AC的中点,所以BM=12BA又AB=λBM+μBC(λ,μ∈R),所以λ=-2,μ=1,所以λ应用2已知向量{a,b}是一个基底,实数x,y满足(3x-4y)a+(2x-3y)b=6a+3b,则x-y=________.3解析:因为{a,b}是一个基底,所以a与b不共线.由平面向量基本定理得3x-4y=6,2x平面向量的坐标运算1.已知AB=(1,-1),C(0,1),若CD=2AB,则点D的坐标为A.(-2,3) B.(2,-3)C.(-2,1) D.(2,-1)D解析:设D(x,y),则CD=(x,y-1),2AB=(2,-2).根据CD=2AB,得(x,y-1)=(2即x=2所以点D的坐标为(2,-1).2.(2024·温州模拟)在平行四边形ABCD中,AD=(3,7),AB=(-2,3),对角线AC与BD交于点O,则CO的坐标为()A.-12,5C.-12,-C解析:因为在平行四边形ABCD中,AB+所以CO=-AO=-12AD+3.已知向量a,b,c在正方形网格中的位置如图所示,用基底{a,b}表示c,则()A.c=2a-3b B.c=-2a-3bC.c=-3a+2b D.c=3a-2bD解析:建立如图所示平面直角坐标系,设正方形网格的边长为1,则A(1,0),B(2,1),C(0,4),D(7,1),所以a=(1,1),b=(-2,3),c=(7,-3).设向量c=ma+nb,则c=ma+nb=(m-2n,m+3n)=(7,-3),则m-2所以c=3a-2b.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的.若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等其坐标相同这一原则,通过列方程(组)来进行求解.平面向量共线的坐标表示【例1】(1)(2024·临沂模拟)已知向量a=(3,1),b=(1,1),c=a+kb.若a∥c,则k等于()A.-1 B.0C.1 D.2B解析:因为c=a+kb=(3,1)+(k,k)=(k+3,k+1),而a∥c,所以3×(k+1)-1×(k+3)=0,解得k=0.(2)在△ABC中,角A,B,C的对边分别为a,b,c,C=π3,若m=c-6,a-b,n=a-b,c+6A.3 B.9C.332 D.C解析:因为m=c-6,a-b,n=a所以(a-b)2=c-6c+6,化为a2+b2-c2=所以cosπ3=a2+b所以S△ABC=12absinC=1平面向量共线的坐标表示问题的解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值,则利用“若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0”解题.(2)利用两向量共线的条件求向量坐标.一般地,求与一个已知向量a共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程(组),求出λ的值后代入λa即可得到所求的向量.1.已知向量a=(1,2),b=(2,-2),c=(m,-1),若c∥(2a+b),则m等于()A.-2 B.-1C.-1A解析:因为a=(1,2),b=(2,-2),所以2a+b=(4,2).又c=(m,-1),c∥(2a+b),所以2m+4=0,解得m=-2.2.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=________.-23解析:由题意,得AB=OB-OA=(4-k,-7),AC=OC-因为A,B,C三点共线,所以AB,AC所以-2×(4-k)=-7×(-2k),解得k=-23平面向量基本定理的应用考向1用已知基底表示向量【例2】如图,已知在梯形ABCD中,AB∥CD,AB=2CD,E,F分别是DC,AB的中点.设AD=a,AB=b,试用{a,b解:因为DC∥AB,AB=2DC,E,F分别是DC,AB的中点,所以DC=EF=ED+DA+AF=-12DC[变式]本例中,若设BC的中点为G,则AG=________.12a+3所以AG=平面向量基本定理的作用以及注意点(1)根据平面向量基本定理可知,同一平面内的任何一个基底都可以表示该平面内的任意向量.用基底表示向量,实质上是利用三角形法则或平行四边形法则,进行向量的线性运算.(2)基底的选取要灵活,必要时可以建立方程或方程组,通过方程或方程组求出要表示的向量.考向2解析法(坐标法)在向量中的应用【例3】如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点.若CA=λCE+μDB(λ,μ∈R),则A.65 B.C.2 D.8B解析:建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),所以CA=(-2,2),CE=(-2,1),DB=(1,2).因为CA=λCE+μDB,所以(-2,2)=λ(-2,1)所以-2λ故λ+μ=85应用平面向量基本定理解题的两种思路(1)基向量法.(2)坐标法.能用坐标法解决的问题,一般不用基向量法.考向3利用平面向量基本定理求参数的值(或范围)【例4】在△ABC中,点P是AB上一点,且CP=23CA+13CB,Q是BC的中点,AQ与CP的交点为M.34解析:如图所示因为A,M,Q三点共线,所以设CM=xCQ+(1-x)CA=x2CB又因为CP=所以x2=13t用平面向量基本定理解决问题的一般思路(1)先选择一个基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.1.(2024·青岛质检)在△ABC中,AN=14NC,若P是直线BN上的一点,且满足AP=mABA.-4 B.-1C.1 D.4B解析:根据题意,设BP=nBN(n∈则AP=AB+BP=AB+nBN=AB+n(AN又AP=mAB+22.如图,在正方形ABCD中,E为DC的中点,若AD=λAC+μAE,则λA.3 B.2C.1 D.-3D解析:以AB,AD所在直线分别为x轴、y轴,建立平面直角坐标系,如图所示.设正方形的边长为1,则A(0,0),C(1,1),D(0,1),E(12,1)所以AE=12,1,AC=(1,1)因为AD=λAC+μ所以λ+μ2=0,λ+μ=课时质量评价(二十九)1.如果e1,e2是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一个基底的是()A.e1与e1+e2B.e1-2e2与e1+2e2C.e1+e2与e1-e2D.e1-2e2与-e1+2e2D解析:对于A,设e1+e2=λe1,则λ=1,1=0,无解,故e1与e对于B,设e1-2e2=λ(e1+2e2),则λ=1,-2=2λ,无解,故e1-2e2与对于C,设e1+e2=λ(e1-e2),则λ=1,1=-λ,无解,故e1+e2与对于D,e1-2e2=-(-e1+2e2),所以e1-2e2与-e1+2e2为共线向量,不能作为平面内所有向量的一个基底.2.(2024·南京模拟)设平面向量a=(1,2),b=(-2,y),若a∥b,则|3a+b|等于()A.5 B.6C.17 D.26A解析:由于a∥b,所以1×y=2×(-2),解得y=-4,所以b=(-2,-4).因为3a+b=(3,6)+(-2,-4)=(1,2),所以|3a+b|=123.已知点P是△ABC所在平面内一点,且PA+PB+PC=0,A.PAB.PAC.PAD.PAD解析:由题意知PA+PB+PC=0,所以PA+AB-所以PA+AB-AP+BC-整理得3PA+BC-2BA=0,即34.已知E为△ABC所在平面内的点,且BA+12BC=2BE.若CEA.-3 B.3C.13 D.-A解析:因为BE=所以BA+12BC所以2CE=-AB所以CE=所以m=14,n=-345.已知向量a=12,14,b=(-2,m),若a与b共线,则|b5解析:因为向量a=12,14与b=(-2,m)共线,所以12×m=14×(-2),解得m=-1.所以b=(-26.已知向量m=(λ+1,1),n=(λ+2,2).若(2m+n)∥(m-2n),则λ=________.0解析:由题意得,2m+n=(3λ+4,4),m-2n=(-λ-3,-3).因为(2m+n)∥(m-2n),所以-3(3λ+4)-4(-λ-3)=0,解得λ=0.7.在△AOB中,AC=15AB,D为OB的中点,若DC=λ-625解析:因为AC=15因为D为OB的中点,所以OD=所以DC=DO+OC=-12所以λ=45,μ=-3108.已知A(-2,4),B(3,-1),C(-3,-4).设AB=a,BC=b,CA=c(1)求3a+b-3c;(2)求满足a=mb+nc的实数m,n;(3)求M,N的坐标及向量MN的坐标.解:由已知得a=(5,-5),b=(-6,-3),c=(1,8).(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)(方法一)因为mb+nc=(-6m+n,-3m+8n),所以-6m(方法二)因为a+b+c=0,所以a=-b-c.又a=mb+nc,所以mb+nc=-b-c,所以m(3)设O为坐标原点,因为CM=OM-OC所以OM=3c+OC=(3,24)+(-3,-4)=(0,20),所以因为CN=ON-OC=-2b,所以ON=-2b+OC=(12,6)+所以N(9,2),所以MN=(9,-18).9.(多选题)已知向量OA=(1,-3),OB=(-2,1),OC=(t+3,t-8),若点A,B,C能构成三角形,则实数t可以为()A.-2 B.1C.1 D.-1ABD解析:点A,B,C能构成三角形,故A,B,C三点不共线,则向量AB,BC不共线.由于向量OA=(1,-3),OB=(-2,1),OC=(t+3,t-8),故AB=OB-OA=(-3,4),BC=OC-OB=(t+5,t-9).若A,B,C三点不共线,则-3(t-9)-4(t10.(2024·大理模拟)在△ABC中,D是直线AB上的点.若2BD=CB+λCA,记△ACB的面积为S1,△ACD的面积为S2,则A.λ6 B.C.13 D.D解析:依题意作图,如图所示.设BD=μBA=μCA-CB由条件BD=得μ=-12所以点D在AB的延长线上,并且AD=32AB所以S111.(多选题)在△ABC中,D为AC上一点且满足AD=13DC,若P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年标准化物流服务合同范本版
- 2024年度环保产业投资合同3篇
- 跨境电商销售合同解析
- 2024年新能源车辆采购履约保证金合同范本3篇
- 2024年度重大新闻发布与媒体合作合同3篇
- 小学美术室家长参与管理制度
- 2025委托拍卖的合同范文
- 矿山作业有限空间安全责任制度
- 餐饮行业晨会沟通管理制度
- 社区危险废物分类管理制度
- 职业价值观量表附带评分标准
- 化学检验员(技师)试题库(含参考答案)
- 牵引管管道施工方案【实用文档】doc
- 2022-2023学年四川省眉山市小学语文三年级上册期末提升模拟题
- 五年级上册数学试题-《组合图形的面积》测试卷A北师大版 (含答案)
- GB/T 16553-2003珠宝玉石鉴定
- 中医妇科常用汤头歌诀
- 艺术人才培养资助项目申报表
- 第11章楼盖资料课件
- 动态心电图报告解读及临床应用医学课件
- 高中数学超几何分布与二项分布优秀课件
评论
0/150
提交评论