版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
坐标系与参数方程选修4-4第一节坐标系考点高考试题考查内容核心素养极坐标系2017·全国卷Ⅱ·T22·10分将极坐标方程化为直角坐标方程并求三角形面积数学运算2017·全国卷Ⅲ·T22·10分参数方程、极坐标方程与普通方程互化,曲线方程,三角函数数学运算2016·全国卷Ⅰ·T23·10分参数方程、极坐标方程与普通方程互化数学运算2016·全国卷Ⅱ·T23·10分参数方程、极坐标方程与普通方程互化,直线与圆的位置关系数学运算2016·全国卷Ⅲ·T23·10分参数方程、极坐标方程与普通方程互化,点到直线距离数学运算2015·全国卷Ⅰ·T23·10分极坐标与直角坐标方程互化,极坐标系中的距离公式数学运算2015·全国卷Ⅱ·T23·10分极坐标与直角坐标方程互化,极坐标系中的距离公式数学运算命题分析本节是高考的必考题,以解答题形式出现,主要考查极坐标与直角坐标方程互化及极坐标概念.02课堂·考点突破03课后·高效演练栏目导航01课前·回顾教材01课前·回顾教材1.平面直角坐标轴中的伸缩变换在平面直角坐标系中进行伸缩变换,即改变________或________的单位长度,将会对图形产生影响.x轴y轴2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个________O,叫作极点;自极点O引一条________Ox,叫作极轴;再选定一个____________、一个____________(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M是平面内一点,极点O与点M的________|OM|叫作点M的极径,记为ρ.②极角:以极轴Ox为始边,射线OM为终边的角xOM叫作点M的极角,记为θ.③极坐标:有序数对(ρ,θ)叫作点M的极坐标,记作M(ρ,θ).定点射线长度单位角度单位距离ρcos
θρsin
θx2+y2ρ=r(0≤θ<2π)ρ=2rsinθ(0≤θ<π)ρsin
θ=a(0<θ<π)提醒:1.简单曲线的极坐标方程可结合极坐标系中ρ和θ的具体含义求出,也可利用极坐标方程与直角坐标方程的互化公式得出.同直角坐标方程一样,由于建系的不同,曲线的极坐标方程也会不同.在没有充分理解极坐标的前提下,可先化成直角坐标解决问题.2.把直角坐标化为极坐标,求极角θ时,应注意判断点P所在的象限(即角θ的终边的位置),以便正确地求出角θ.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)在伸缩变换下,直线仍然变成直线,圆仍然变成圆.(
)(2)在伸缩变换下,椭圆可变为圆,圆可变为椭圆.(
)(3)过极点,倾斜角为α的直线的极坐标方程可表示为θ=α或θ=π+α.(
)(4)圆心在极轴上的点(a,0)处,且过极点O的圆的极坐标方程为ρ=2asinθ.(
)答案:(1)×
(2)√
(3)√
(4)×2.在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cos
θ和ρsin
θ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,求曲线C1和C2的交点的直角坐标.02课堂·考点突破平面直角坐标轴中的伸缩变换[明技法]1.极坐标与直角坐标互化公式的3个前提条件(1)取直角坐标系的原点为极点.(2)以x轴的非负半轴为极轴.(3)两种坐标系规定相同的长度单位.极坐标与直角坐标的互化2.直角坐标化为极坐标的注意点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M所在的象限(即角θ的终边的位置),以便正确地求出角θ∈[0,2π)的值.[刷好题]⊙O1和⊙O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的直角坐标方程.解:以极点为原点,极轴为x轴正半轴建立平面直角坐标系,两坐标系中取相同的长度单位.(1)ρ=4cosθ,两边同乘以ρ,得ρ2=4ρcosθ;ρ=-4sinθ,两边同乘以ρ,得ρ2=-4ρsinθ.由ρcos
θ=x,ρsin
θ=y,ρ2=x2+y2,得⊙O1,⊙O2的直角坐标方程分别为x2+y2-4x=0和x2+y2+4y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶厂生产规划方案
- 茶具工厂清仓处理方案
- 茶业传统文化研究报告
- 肠道细菌机制研究报告
- 重庆财经学院《传感器原理及应用》2021-2022学年第一学期期末试卷
- 重庆财经学院《保税物流实务》2021-2022学年第一学期期末试卷
- 炒蛋炒饭课程设计
- 潮牌风险对策研究报告
- 四年级数学(四则混合运算带括号)计算题专项练习与答案
- 潮汕寿司传承文化研究报告
- 中国食物成分表2018年(标准版)第6版
- 2024年江西省财投供应链金融有限公司招聘笔试参考题库附带答案详解
- 2024年政府工作报告基础知识试题及答案(100题)
- JTG F80-1-2004 公路工程质量检验评定标准 第一册 土建工程
- 2023-2024苏教版小学五年级数学上册全册测评试卷(含答案)
- 小学英语就业能力展示
- 中医-艾灸治疼痛
- “安全风险分级管控”工作制度(2篇)
- 《艾滋病毒》课件
- 科普文化墙设计理念
- 管道保温计算公式
评论
0/150
提交评论