下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE第六章数列第三节等比数列及其前n项和A级·基础过关|固根基|1.已知{an}为等比数列且满意a6-a2=30,a3-a1=3,则数列{an}的前5项和S5=()A.15 B.31C.40 D.121解析:选B设等比数列{an}的公比为q,因为{an}为等比数列且满意a6-a2=30,a3-a1=3,所以eq\b\lc\{(\a\vs4\al\co1(a1q5-a1q=30,,a1q2-a1=3,))可得eq\b\lc\{(\a\vs4\al\co1(a1=1,,q=2,))所以S5=eq\f(1-25,1-2)=31,所以数列{an}的前5项和S5=31.2.在等比数列{an}中,设其前n项和为Sn,已知S3=8,S6=7,则a7+a8+a9等于()A.eq\f(1,8) B.-eq\f(1,8)C.eq\f(57,8) D.eq\f(55,8)解析:选A因为a7+a8+a9=S9-S6,且S3,S6-S3,S9-S6也成等比数列,即8,-1,S9-S6成等比数列,所以8(S9-S6)=1,即S9-S6=eq\f(1,8),所以a7+a8+a9=eq\f(1,8).3.(一题多解)(2025届福建厦门模拟)设等比数列{an}的前n项和为Sn,若Sn=2n+1+λ,则λ=()A.-2 B.-1C.1 D.2解析:选A解法一:当n=1时,a1=S1=4+λ.当n≥2时,an=Sn-Sn-1=(2n+1+λ)-(2n+λ)=2n,此时eq\f(an+1,an)=eq\f(2n+1,2n)=2.因为{an}是等比数列,所以eq\f(a2,a1)=2,即eq\f(4,4+λ)=2,解得λ=-2.故选A.解法二:依题意,a1=S1=4+λ,a2=S2-S1=4,a3=S3-S2=8,因为{an}是等比数列,所以aeq\o\al(2,2)=a1·a3,所以8(4+λ)=42,解得λ=-2.故选A.4.记等比数列{an}的前n项积为Tn(n∈N*),已知am-1·am+1-2am=0,且T2m-1=128,则mA.4 B.7C.10 D.12解析:选A因为{an}是等比数列,所以am-1am+1=aeq\o\al(2,m).又am-1am+1-2am=0,则aeq\o\al(2,m)-2am=0,所以am=2或am=0(舍去).由等比数列的性质可知前2m-1项的积T2m-1=aeq\o\al(2m-1,m),即22m-1=128,故m=4.故选A.5.在正项等比数列{an}中,已知a1a2a3=4,a4a5a6=12,…,an-1anA.12 B.13C.14 D.15解析:选C因为数列{an}是各项均为正数的等比数列,所以a1a2a3,a4a5a6,a7a8不妨令b1=a1a2a3,b2=a4a5a6,则公比q=eq\f(b2,b1)=eq\f(12,4)=3.所以bm=4×3m-1令bm=324,即4×3m-1解得m=5,所以b5=324,即a13a14所以n=14.6.(2025届济南模拟)已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列,a2+a5=4,则a8=________.解析:因为S3,S9,S6成等差数列,所以公比q≠1,所以eq\f(2(1-q9),1-q)=eq\f(1-q3,1-q)+eq\f(1-q6,1-q),整理得2q6=1+q3,所以q3=-eq\f(1,2),故a2·eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))=4,解得a2=8,故a8=a2·q6=a2·(q3)2=8×eq\f(1,4)=2.答案:27.记Sn为数列{an}的前n项和.若Sn=2an+1,则an=________,S6=________.解析:因为Sn=2an+1,所以当n=1时,a1=2a1+1,解得a1=-1;当n≥2时,an=Sn-Sn-1=2an+1-(2an-1+1),所以an=2an-1,所以数列{an}是以-1为首项,2为公比的等比数列,所以an=-2n-1,所以S6=eq\f(-1×(1-26),1-2)=-63.答案:-2n-1-638.已知在等比数列{an}中a2=1,则其前3项的和S3的取值范围是________.解析:设等比数列{an}的公比为q,则S3=a1+a2+a3=a2eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,q)+1+q))=1+q+eq\f(1,q).当公比q>0时,S3=1+q+eq\f(1,q)≥1+2eq\r(q·\f(1,q))=3,当且仅当q=1时,等号成立;当公比q<0时,S3=1-eq\b\lc\(\rc\)(\a\vs4\al\co1(-q-\f(1,q)))≤1-2eq\r((-q)·\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,q))))=-1,当且仅当q=-1时,等号成立.所以S3∈(-∞,-1]∪[3,+∞).答案:(-∞,-1]∪[3,+∞)9.(2025届昆明市诊断测试)已知数列{an}是等比数列,公比q<1,前n项和为Sn,若a2=2,S3=7.(1)求数列{an}的通项公式;(2)设m∈Z,若Sn<m恒成立,求m的最小值.解:(1)由a2=2,S3=7,得eq\b\lc\{(\a\vs4\al\co1(a1q=2,,a1+a1q+a1q2=7,))解得eq\b\lc\{(\a\vs4\al\co1(a1=4,,q=\f(1,2)))或eq\b\lc\{(\a\vs4\al\co1(a1=1,,q=2))(舍去).所以an=4·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up12(n-1)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up12(n-3).(2)由(1)可知,Sn=eq\f(a1(1-qn),1-q)=eq\f(4\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2n))),1-\f(1,2))=8eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2n)))<8.又Sn<m恒成立,m∈Z,所以m的最小值为8.10.(2025届南昌市第一次模拟)已知等比数列{an}的前n项和为Sn,且满意S4=2a4-1,S3=2a(1)求数列{an}的通项公式;(2)若数列{bn}满意bn=Sn(n∈N*),求数列{bn}的前n项和Tn.解:(1)设等比数列{an}的公比为q,由S4-S3=a4,得2a4-2a3=a4,所以eq\f(a4,a3)=2,所以q=2.又因为S3=2a3所以a1+2a1+4a1=8所以a1=1,所以an=2n-1.(2)由(1)知a1=1,q=2,则Sn=eq\f(1-2n,1-2)=2n-1,所以bn=2n-1,则Tn=b1+b2+…+bn=2+22+…+2n-n=eq\f(2(1-2n),1-2)-n=2n+1-2-n.B级·素养提升|练实力|11.(2025届安徽池州模拟)在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不犯难;次日脚痛减一半,六朝才得到其关.”意思是某人要走三百七十八里的路程,第一天脚步轻快有力,走了一段路程,其次天脚痛,走的路程是第一天的一半,以后每天走的路程都是前一天的一半,走了六天才走完这段路程.则下列说法错误的是()A.此人其次天走了九十六里路B.此人第一天走的路程比后五天走的路程多六里C.此人第三天走的路程占全程的eq\f(1,8)D.此人后三天共走了四十二里路解析:选C记每天走的路程里数为an(n=1,2,3,…,6),由题意知{an}是公比为eq\f(1,2)的等比数列,由S6=378,得eq\f(a1\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,26))),1-\f(1,2))=378,解得a1=192,所以a2=192×eq\f(1,2)=96,此人第一天走的路程比后五天走的路程多192-(378-192)=6(里),a3=192×eq\f(1,4)=48,eq\f(48,378)>eq\f(1,8),前3天走的路程为192+96+48=336(里),则后3天走的路程为378-336=42(里),故选C.12.(2025届长春市高三质量监测)已知数列{an}中,a1=2,an+1=2an+2n+1,设bn=eq\f(an,2n).(1)求证:数列{bn}是等差数列;(2)求数列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,bnbn+1)))的前n项和Sn.解:(1)证明:当n≥2时,bn-bn-1=eq\f(an,2n)-eq\f(an-1,2n-1)=eq\f(an-2an-1,2n)=1,又b1=1,所以{bn}是以1为首项,1为公差的等差数列.(2)由(1)可知,bn=n,所以eq\f(1,bnbn+1)=eq\f(1,n)-eq\f(1,n+1),所以Sn=1-eq\f(1,2)+eq\f(1,2)-eq\f(1,3)+…+eq\f(1,n)-eq\f(1,n+1)=1-eq\f(1,n+1)=eq\f(n,n+1).13.(2025届湖北省五校联考)已知数列{an}是等差数列,a2=6,前n项和为Sn,{bn}是等比数列,b2=2,a1b3=12,S3+b1=19.(1)求数列{an},{bn}的通项公式;(2)求数列{bncos(anπ)}的前n项和Tn.解:(1)因为数列{an}是等差数列,a2=6,所以S3+b1=3a2+b1=18+b1=19,所以b1因为b2=2,数列{bn}是等比数列,所以公比q=eq\f(b2,b1)=2,所以bn=2n-1.所以b3=4,因为a1b3=12,所以a1=3,因为a2=6,数列{an}是等差数列,所以公差d=a2-a1=3,所以an=3n.(2)由(1)得,令Cn=bncos(anπ)=(-1)n2n-1,所以Cn+1=(-1)n+12n,所以eq\f(Cn+1,Cn)=-2,又C1=-1,所以数列{bncos(anπ)}是以-1为首项,-2为公比的等比数列,所以Tn=eq\f(-1×[1-(-2)n],1+2)=-eq\f(1,3)[1-(-2)n].14.(2025届湖北黄冈调研)在数列{an}中,a1=2,an+1=eq\f(n+1,2n)·an(n∈N*).(1)证明:数列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,n)))是等比数列,并求数列{an}的通项公式;(2)设bn=eq\f(an,4n-an),若数列{bn}的前n项和是Tn,求证:Tn<2.解:(1)证明:由题设得eq\f(an+1,n+1)=eq\f(1,2)·eq\f(an,n),又eq\f(a1,1)=2,所以数列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,n)))是首项为2,公比为eq\f(1,2)的等比数列,所以eq\f(an,n)=2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\u
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《电工基础与技能训练》课件-第四章 交流电路的分析-刘鑫尚
- 图书转库服务合同
- 《第九章9.1-9》课件.2-9.2新一代人工智能发展趋势
- 2025年榆林货运从业资格证考试试题及答案
- 2025年西双版纳怎么考货运从业资格证
- 2025年西宁货运从业资格证考试答案
- 2025年吕梁货运资格证安检考试题
- 环保工程合伙施工协议合同
- 客户反馈处理办法
- 合同部技术创新计划
- 广东能源集团校园招聘笔试真题
- 《公寓消防培训资料》课件
- 2024-2025学年人教版七年级数学上册期末检测试卷
- 2024中国融通集团北京企业管理共享中心社会招聘笔试备考试题及答案解析
- 单位和个人签的销售合同范本(2篇)
- 《中国传统文化》课件模板(六套)
- 第24课《寓言四则》说课稿 2024-2025学年统编版语文七年级上册
- 色卡-CBCC中国建筑标准色卡(千色卡1026色)
- GB/T 42125.1-2024测量、控制和实验室用电气设备的安全要求第1部分:通用要求
- 采购部门年终总结报告
- 蓝精灵课件教学课件
评论
0/150
提交评论