版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、真题汇编1.【2017课标卷Ⅱ卷理11】若是函数的极值点,则的极小值为A. B. C. D.12.【2017课标卷Ⅲ卷理11】已知函数有唯一零点,则a=A. B. C. D.13.【2017课标Ⅰ卷理21】已知函数.(1)讨论的单调性;(2)若有两个零点,求a的取值范围.4.【2017课标Ⅱ卷理21】已知函数,且.(1)求;(2)证明:存在唯一的极大值点,且.5.【2017课标Ⅲ卷理21】已知函数.(1)若,求a的值;(2)设m为整数,且对于任意正整数n,,求m的最小值.6.【2018课标Ⅰ卷理5】设函数.若为奇函数,则曲线在点处的切线方程为()A. B. C. D.7.【2018课标卷Ⅰ理21】已知函数.(1)讨论的单调性;(2)若存在两个极值点,证明:.8.【2018课标卷Ⅱ理13】曲线在点处的切线方程为__________.9.【2018课标Ⅱ卷理21】已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求的值.10.【2018课标Ⅲ卷理14】曲线在点处的切线的斜率为,则________.11.【2018课标卷Ⅲ理21】已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.12.【2019课标卷Ⅰ理20】已知函数,为的导数.证明:(1)在区间存在唯一极大值点;(2)有且仅有2个零点.13.【2019课标Ⅱ卷理20】已知函数.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线的切线.14.【2019课标Ⅲ卷理6】已知曲线在点处的切线方程为,则A. B. C. D.15.【2019课标Ⅲ卷理20】已知函数.(1)讨论的单调性;(2)是否存在,使得在区间的最小值为且最大值为1?若存在,求出的所有值;若不存在,说明理由.16.【2020课标卷Ⅰ理6】函数的图像在点处的切线方程为()A. B.C. D.17.【2020新课标卷Ⅰ理21】已知函数.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥x3+1,求a的取值范围.18.【2020课标卷Ⅱ理21】已知函数f(x)=sin2xsin2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:;(3)设n∈N*,证明:sin2xsin22xsin24x…sin22nx≤.19.【2020课标Ⅲ卷理21】设函数,曲线在点(,f())处的切线与y轴垂直.(1)求b.(2)若有一个绝对值不大于1的零点,证明:所有零点的绝对值都不大于1.20.【2021全国甲卷理13】曲线在点处的切线方程为__________.21.【2021全国甲卷理21】已知且,函数.(1)当时,求的单调区间;(2)若曲线与直线有且仅有两个交点,求a的取值范围.22.【2021全国乙卷理10】设,若为函数的极大值点,则()A. B. C. D.23.【2021全国乙卷理12】设,,.则()A. B. C. D.24.【2021全国乙卷理20】设函数,已知是函数的极值点.(1)求a;(2)设函数.证明:.二、详解品评1.【答案】A【解析】试题分析:由题可得,因为,所以,,故,令,解得或,所以在上单调递增,在上单调递减,所以的极小值为,故选A.【考点】函数的极值、函数的单调性【名师点睛】(1)可导函数y=f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同学*科网;(2)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值.2.【答案】C【解析】试题分析:函数的零点满足,设,则,当时,;当时,,函数单调递减;当时,,函数单调递增,当时,函数取得最小值,为.设,当时,函数取得最小值,为,若,函数与函数没有交点;若,当时,函数和有一个交点,即,解得.故选C.【考点】函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.3.【解析】试题分析:(1)讨论单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对按,进行讨论,写出单调区间;(2)根据第(1)问,若,至多有一个零点.若,当时,取得最小值,求出最小值,根据,,进行讨论,可知当时有2个零点.易知在有一个零点;设正整数满足,则.由于,因此在有一个零点.从而可得的取值范围为.试题解析:(1)的定义域为,,(ⅰ)若,则,所以在单调递减.(ⅱ)若,则由得.当时,;当时,,所以在单调递减,在单调递增.(2)(ⅰ)若,由(1)知,至多有一个零点.(ⅱ)若,由(1)知,当时,取得最小值,最小值为.①当时,由于,故只有一个零点;②当时,由于,即,故没有零点;③当时,,即.又,故在有一个零点.设正整数满足,则.由于,因此在有一个零点.综上,的取值范围为.【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数有2个零点求参数a的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断与其交点的个数,从而求出a的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.4.【答案】(1);(2)证明见解析.(2)由(1)知,.设,则.当时,;当时,,所以在上单调递减,在上单调递增.又,,,所以在有唯一零点,在有唯一零点1,且当时,;当时,,当时,.因为,所以是的唯一极大值点.由得,故.由得.因为是在(0,1)的最大值点,由,得.所以.【考点】利用导数研究函数的单调性、利用导数研究函数的极值【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.5.【答案】(1);(2)【解析】试题分析:(1)由原函数与导函数的关系可得x=a是在的唯一最小值点,列方程解得;(2)由题意结合(1)的结论对不等式进行放缩,求得,结合可知实数的最小值为.试题解析:(1)的定义域为.=1\*GB3①若,因为,所以不满足题意;=2\*GB3②若,由知,当时,;当时,,所以在单调递减,在单调递增,故x=a是在的唯一最小值点.由于,所以当且仅当a=1时,.故a=1.【考点】利用导数研究函数的单调性;利用导数研究函数的最值;利用导数证明不等式【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.本专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要有以下几个角度:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.6.【答案】D【解析】【详解】分析:利用奇函数偶次项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.7.【答案】(1)见解析;(2)见解析【解析】【详解】分析:(1)首先确定函数的定义域,之后对函数求导,之后对进行分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2)根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.详解:(1)的定义域为,.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.点睛:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.8.【答案】【解析】【分析】先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.【详解】【点睛】求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.9.【答案】(1)见解析;(2)【解析】【详解】分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式;(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.详解:(1)当时,等价于.设函数,则.当时,,所以在单调递减.而,故当时,,即.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.10.【答案】【解析】【分析】求导,利用导数的几何意义计算即可.【详解】解:则所以故答案为-3.【点睛】本题主要考查导数的计算和导数的几何意义,属于基础题.11.【答案】(1)见解析(2)【解析】分析:(1)求导,利用函数单调性证明即可.(2)分类讨论和,构造函数,讨论的性质即可得到a的范围.详解:(1)当时,,.设函数,则.当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点综上,.点睛:本题考查函数与导数综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论和,当时构造函数时关键,讨论函数的性质,本题难度较大.12.【答案】(1)见解析;(2)见解析【解析】【分析】(1)求得导函数后,可判断出导函数在上单调递减,根据零点存在定理可判断出,使得,进而得到导函数在上的单调性,从而可证得结论;(2)由(1)的结论可知为在上的唯一零点;当时,首先可判断出在上无零点,再利用零点存在定理得到在上的单调性,可知,不存在零点;当时,利用零点存在定理和单调性可判断出存在唯一一个零点;当,可证得;综合上述情况可证得结论.【详解】(1)由题意知:定义域为:且令,,在上单调递减,在上单调递减在上单调递减又,,使得当时,;时,即在上单调递增;在上单调递减则为唯一的极大值点即:在区间上存在唯一的极大值点.(2)由(1)知:,①当时,由(1)可知在上单调递增在上单调递减又为在上的唯一零点②当时,在上单调递增,在上单调递减又在上单调递增,此时,不存在零点又,使得在上单调递增,在上单调递减又,在上恒成立,此时不存在零点③当时,单调递减,单调递减在上单调递减又,即,又在上单调递减在上存在唯一零点④当时,,即在上不存在零点综上所述:有且仅有个零点【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.13.【答案】(1)函数在和上是单调增函数,证明见解析;(2)证明见解析.【解析】【分析】(1)对函数求导,结合定义域,判断函数的单调性;(2)先求出曲线在处的切线,然后求出当曲线切线的斜率与斜率相等时,证明曲线切线在纵轴上的截距与在纵轴的截距相等即可.【详解】(1)函数的定义域为,,因为函数的定义域为,所以,因此函数在和上是单调增函数;当,时,,而,显然当,函数有零点,而函数在上单调递增,故当时,函数有唯一的零点;当时,,因为,所以函数在必有一零点,而函数在上是单调递增,故当时,函数有唯一的零点综上所述,函数的定义域内有2个零点;(2)因为是的一个零点,所以,所以曲线在处的切线的斜率,故曲线在处的切线的方程为:而,所以的方程为,它在纵轴的截距为.设曲线的切点为,过切点为切线,,所以在处的切线的斜率为,因此切线的方程为,当切线的斜率等于直线的斜率时,即,切线在纵轴的截距为,而,所以,直线的斜率相等,在纵轴上的截距也相等,因此直线重合,故曲线在处的切线也是曲线的切线.【点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力.14.【答案】D【解析】【分析】通过求导数,确定得到切线斜率的表达式,求得,将点的坐标代入直线方程,求得.【详解】详解:,将代入得,故选D.【点睛】本题关键得到含有a,b的等式,利用导数几何意义和点在曲线上得到方程关系.15.【答案】(1)见详解;(2)或.【解析】【分析】(1)先求导数,再根据的范围分情况讨论函数单调性;(2)根据的各种范围,利用函数单调性进行最大值和最小值的判断,最终得出,的值.【详解】(1)对求导得.所以有当时,区间上单调递增,区间上单调递减,区间上单调递增;当时,区间上单调递增;当时,区间上单调递增,区间上单调递减,区间上单调递增.(2)若在区间有最大值1和最小值-1,所以若,区间上单调递增,区间上单调递减,区间上单调递增;此时在区间上单调递增,所以,代入解得,,与矛盾,所以不成立.若,区间上单调递增;在区间.所以,代入解得.若,区间上单调递增,区间上单调递减,区间上单调递增.即在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.即相减得,即,又因为,所以无解.若,区间上单调递增,区间上单调递减,区间上单调递增.即在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.即相减得,解得,又因为,所以无解.若,区间上单调递增,区间上单调递减,区间上单调递增.所以有区间上单调递减,所以区间上最大值为,最小值为即解得.综上得或.【点睛】这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充.16.【答案】B【解析】【分析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.【详解】,,,,因此,所求切线的方程为,即.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题17.【答案】(1)当时,单调递减,当时,单调递增.(2)【解析】【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.(2)首先讨论x=0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a的取值范围.【详解】(1)当时,,,由于,故单调递增,注意到,故:当时,单调递减,当时,单调递增.(2)由得,,其中,①.当x=0时,不等式为:,显然成立,符合题意;②.当时,分离参数a得,,记,,令,则,,故单调递增,,故函数单调递增,,由可得:恒成立,故当时,,单调递增;当时,,单调递减;因此,,综上可得,实数a的取值范围是.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.18.【答案】(1)当时,单调递增,当时,单调递减,当时,单调递增.(2)证明见解析;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后由导函数的零点确定其在各个区间上的符号,最后确定原函数的单调性即可;(2)首先确定函数的周期性,然后结合(1)中的结论确定函数在一个周期内的最大值和最小值即可证得题中的不等式;(3)对所给的不等式左侧进行恒等变形可得,然后结合(2)的结论和三角函数的有界性进行放缩即可证得题中的不等式.【详解】(1)由函数的解析式可得:,则:,在上的根为:,当时,单调递增,当时,单调递减,当时,单调递增.(2)注意到,故函数是周期为的函数,结合(1)的结论,计算可得:,,,据此可得:,,即.(3)结合(2)的结论有:.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.19.【答案】(1);(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到,解方程即可;(2)由(1)可得,易知在上单调递减,在,上单调递增,且,采用反证法,推出矛盾即可.【详解】(1)因为,由题意,,即则;(2)由(1)可得,,令,得或;令,得,所以在上单调递减,在,上单调递增,且,若所有零点中存在一个绝对值大于1的零点,则或,即或.当时,,又,由零点存在性定理知在上存在唯一一个零点,即在上存在唯一一个零点,在上不存在零点,此时不存在绝对值不大于1的零点,与题设矛盾;当时,,又,由零点存在性定理知在上存在唯一一个零点,即在上存在唯一一个零点,在上不存在零点,此时不存在绝对值不大于1的零点,与题设矛盾;综上,所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.20.【答案】【解析】【分析】先验证点在曲线上,再求导,代入切线方程公式即可.【详解】由题,当时,,故点在曲线上.求导得:,所以.故切线方程为.故答案为:.21.【答案】(1)上单调递增;上单调递减;(2).【解析】【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;(2)方法一:利用指数对数的运算法则,可以将曲线与直线有且仅有两个交点等价转化为方程有两个不同的实数根,即曲线与直线有两个交点,利用导函数研究的单调性,并结合的正负,零点和极限值分析的图象,进而得到,发现这正好是,然后根据的图象和单调性得到的取值范围.【详解】(1)当时,,令得,当时,,当时,,∴函数在上单调递增;上单调递减;(2)[方法一]【最优解】:分离参数设函数,则,令,得,在内,单调递增;在上,单调递减;,又,当趋近于时,趋近于0,所以曲线与直线有且仅有两个交点,即曲线与直线有两个交点的充分必要条件是,这即是,所以的取值范围是.[方法二]:构造差函数由与直线有且仅有两个交点知,即在区间内有两个解,取对数得方程在区间内有两个解.构造函数,求导数得.当时,在区间内单调递增,所以,在内最多只有一个零点,不符合题意;当时,,令得,当时,;当时,;所以,函数的递增区间为,递减区间为.由于,当时,有,即,由函数在内有两个零点知,所以,即.构造函数,则,所以递减区间为,递增区间为,所以,当且仅当时取等号,故的解为且.所以,实数a的取值范围为.[方法三]分离法:一曲一直曲线与有且仅有两个交点等价为在区间内有两个不相同的解.因为,所以两边取对数得,即,问题等价为与有且仅有两个交点.①当时,与只有一个交点,不符合题意.②当时,取上一点在点的切线方程为,即.当与为同一直线时有得直线的斜率满足:时,与有且仅有两个交点.记,令,有.在区间内单调递增;在区间内单调递减;时,最大值为,所当且时有.综上所述,实数a的取值范围为.[方法四]:直接法.因为,由得.当时,在区间内单调递减,不满足题意;当时,,由得在区间内单调递增,由得在区间内单调递减.因为,且,所以,即,即,两边取对数,得,即.令,则,令,则,所以在区间内单调递增,在区间内单调递减,所以,所以,则的解为,所以,即.故实数a的范围为.]【整体点评】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,方法一:将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.方法二:将问题取对,构造差函数,利用导数研究函数的单调性和最值.方法三:将问题取对,分成与两个函数,研究对数函数过原点的切线问题,将切线斜率与一次函数的斜率比较得到结论.方法四:直接求导研究极值,单调性,最值,得到结论.22.【答案】D【解析】【分析】先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到所满足的关系,由此确定正确选项.【详解】若,则为单调函数,无极值点,不符合题意,故.有和两个不同零点,且在左右附近是不变号,在左右附近是变号的.依题意,为函数的极大值点,在左右附近都是小于零的.当时,由,,画出的图象如下图所示:由图可知,,故.当时,由时,,画出的图象如下图所示:由图可知,,故.综上所述,成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.23.【答案】B【解析】【分析】利用对数的运算和对数函数的单调性不难对a,b的大小作出判定,对于a与c,b与c的大小关系,将0.01换成x,分别构造函数,,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f(0)=0,g(0)=0即可得出a与c,b与c的大小关系.【详解】,所以;下面比较与的大小关系.记,则,,由于所以当0<x<2时,,即,,所以在上单调递增,所以,即,即;令,则,,由于,在x>0时,,所以,即函数在[0,+∞)上单调递减,所以,即,即b<c;综上,,故选:B.【点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.24.【答案】(1);(2)证明见详解【解析】【分析】(1)由题意求出,由极值点处导数为0即可求解出参数;(2)由(1)得,且,分类讨论和,可等价转化为要证,即证在和上恒成立,结合导数和换元法即可求解【详解】(1)由,,又是函数的极值点,所以,解得;(2)[方法一]:转化为有分母的函数由(Ⅰ)知,,其定义域为.要证,即证,即证.(ⅰ)当时,,,即证.令,因为,所以在区间内为增函数,所以.(ⅱ)当时,,,即证,由(ⅰ)分析知在区间内为减函数,所以.综合(ⅰ)(ⅱ)有.[方法二]【最优解】:转化为无分母函数由(1)得,,且,当时,要证,,,即证,化简得;同理,当时,要证,,,即证,化简得;令,再令,则,,令,,当时,,单减,故;当时,,单增,故;综上所述,在恒成立.[方法三]:利用导数不等式中的常见结论证明令,因为,所以在区间内是增函数,在区间内是减函数,所以,即(当且仅当时取等号).故当且时,且,,即,所以.(ⅰ)当时,,所以,即,所以.(ⅱ)当时,,同理可证得.综合(ⅰ)(ⅱ)得,当且时,,即.【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当时,转化为证明,当时,转化为证明,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当时,成立和当时,成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数,利用导数分析单调性,证得常见常用结论(当且仅当时取等号).然后换元得到,分类讨论,利用不等式的基本性质证得要证得不等式,有一定的巧合性.
三、试题热点1、考点表格分析:热点考点20172018201920202021(1)导数的定义(2)求函数的导数(3)导数的几何意义Ⅰ卷理16;Ⅲ卷理15Ⅰ卷理5Ⅱ卷理13Ⅲ卷理14Ⅲ卷理6Ⅰ卷理6甲卷理13(4)利用导函数研究函数的图像乙卷理12(5)利用导数研究函数的单调性Ⅰ卷理21Ⅰ卷理21Ⅱ卷理20Ⅲ卷理20Ⅱ卷理21甲卷理21(6)函数的极值与最值Ⅱ卷理11Ⅲ卷理21Ⅱ卷理12;Ⅱ卷理21(2)Ⅰ卷理21Ⅱ卷理21甲卷理21乙卷理10(7)方程解(函数零点)的个数问题及含与零点有关的含参范围Ⅱ卷理21Ⅲ卷理11Ⅲ卷理21Ⅰ卷理21Ⅲ卷理21Ⅰ卷理20Ⅲ卷理21Ⅲ卷理21甲卷理21乙卷理20(8)利用导数证明不等式Ⅱ卷理21Ⅱ卷理21乙卷理20(9)不等式恒成立与存在性问题、构造函数Ⅲ卷理21(10)导数在实际问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年销售代理佣金专项合同3篇
- 2025年微电子组件项目申请报告模板
- 二零二五年度国际货运代理合同(含多式联运及保险服务)
- 2024智能化系统建设工程合同范本
- 2024年物业规定:停车位使用互换合同3篇
- 2025年模块组合集成电源项目立项申请报告
- 2024沈阳住房公积金贷款贷款期限延长与合同修订协议3篇
- 2024版施工协议履行进度及问题汇报一
- 二零二五年度公章委托管理与客户关系维护合同3篇
- 2024版地基基础建设买卖合同协议3篇
- 数据中心供电系统应用方案
- (正式版)SH∕T 3507-2024 石油化工钢结构工程施工及验收规范
- 中东及非洲注塑成型模具行业现状及发展机遇分析2024-2030
- 牡丹江2024年黑龙江牡丹江医科大学招聘109人笔试历年典型考题及考点附答案解析
- 贵州省黔西南布依族苗族自治州2023-2024学年六年级下学期6月期末语文试题
- 泰州市2022-2023学年七年级上学期期末数学试题【带答案】
- JGJ276-2012 建筑施工起重吊装安全技术规范 非正式版
- 2019电子保单业务规范
- 学堂乐歌 说课课件-2023-2024学年高中音乐人音版(2019) 必修 音乐鉴赏
- 幕墙工程材料组织、运输装卸和垂直运输方案
- 灌溉用水循环利用技术
评论
0/150
提交评论