版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE18-云南省楚雄州中小学2024-2025学年高二数学上学期期中教学质量监测试题(含解析)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】C【解析】【分析】分别求出集合A,B,再按交集的定义运算即可.【详解】由,得,所以,又,所以.故选:C2.下列抽样问题中最适合用简洁随机抽样法抽样的是()A.从全班46人中抽取6人参与一项问卷调查B.某企业为了解该企业职工的身体健康状况,从职工(其中老年职工有180人,中青年职工有320人)中抽取50人进行体检C.某灯泡厂从一条生产线上生产的10000个灯泡中抽取100个测试灯泡的运用时长D.某市从参与高三第一次模拟考试的3000名考生中抽取120名考生分析试题作答状况【答案】A【解析】【分析】依据简洁随机抽样、系统抽样以及分层抽样的特征逐一推断即可得出选项.【详解】对于A,样本容量较少,适合简洁随机抽样;对于B,探讨对象有明显的分层现象,适合分层抽样;对于C、D,探讨对象中的个体容量较大,适合系统抽样;故选:A3.在中,角,,所对的边分别为,,.若,,则()A. B. C. D.【答案】C【解析】【分析】由正弦定理即可求出.【详解】因为所以.由正弦定理可得,则.故选:C.4.已知,则下列不等式肯定成立的是()A. B. C. D.【答案】D【解析】【分析】取特别值可推断ABC;由不等式的性质可推断D.【详解】对于A,若,则,故A错误;对于B,若,则,故B错误;对于C,若,则,故C错误;对于D,,即,若,则,故D正确.故选:D.5.若直线:被圆:截得的弦长为4,则()A.5 B.5或-3 C.3 D.3或-【答案】B【解析】【分析】求出圆心到直线的距离,利用几何法求弦长即可建立关系求解.【详解】由题可知圆C的圆心为,半径,则圆心到直线的距离,直线被圆截得弦长为4,,即,解得或5.故选:B.6.已知,,则()A. B. C. D.【答案】D【解析】【分析】利用对数的性质和运算法则及换底公式求解.【详解】,故选:.7.在等差数列中,,,则()A.12 B.22 C.24 D.【答案】B【解析】【分析】利用等差数列性质即可求解.【详解】设数列的公差为则故.故选:B8.某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.【答案】D【解析】【分析】依据三视图作出几何体的直观图,再利用柱体与锥体的体积公式即可求解.【详解】由几何体的三视图,可以得到该几何体,其中一边为圆锥的一半,另一边为圆柱的一半,作出几何体的直观图,如下:圆柱、圆锥的底面半径均为,高均为,则几何体的体积.故选:D9.已知地与地的距离是4千米,地与地的距离是3千米,地在地的西北方向,地在地的西偏南方向上,则,两地之间的距离是()A.千米 B.13千米 C.千米 D.37千米【答案】A【解析】【分析】利用余弦定理即可求解.【详解】如图,由题意可得千米,千米,,则,故千米.故选:A10.若将函数的图像向左平移个单位长度后所得图像关于坐标原点对称,则满意条件的的全部值的和()A.175 B.225 C.200 D.250【答案】B【解析】分析】先由平移变换规律求出平移后的函数,由于其图像关于原点对称,所以,得,再由可求出全部的的值,从而可求得结果【详解】将函数的图像向左平移个单位长度后得到函数的图像.因为是奇函数,所以,所以,因为,所以,故.故选:B【点睛】此题考查三角函数的图像变换,考查三角函数的图像和性质的应用,属于基础题11.已知等比数列共有32项,其公比,且奇数项之和比偶数项之和少60,则数列的全部项之和是()A.30 B.60 C.90 D.【答案】D【解析】【分析】设等比数列的奇数项之和为,偶数项之和为则,,则可求出,值,从而得出答案.【详解】设等比数列的奇数项之和为,偶数项之和为则,又,则,解得,故数列的全部项之和是.故选:D12.在中,角,,所对的边分别为,,.已知,且,则的取值范围是()A. B. C. D.【答案】B【解析】【分析】由,利用两角差的正弦易得,进而得到,,再依据,转化为,利用二次函数的性质求解.【详解】因为,所以,所以,因为A,B为内角,所以,即,则,又因为,所以,所以,,因为解得,则,所以的取值范围是,故选:B第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知向量,,若,则______.【答案】【解析】【分析】干脆利用向量垂直坐标运算公式运算即可.【详解】由题意可得,则.故答案为:14.已知,满意约束条件,则的最大值是________.【答案】14【解析】【分析】画出不等式组表示的平面区域,数形结合即可求出的最大值.【详解】画出不等式组表示的平面区域,如图阴影部分,将化为,视察图形可知,当直线经过点A时,取得最大值,联立直线,解得,即,.故答案为:14.15.设正项等比数列的前项和为,,且,则数列的公比________.【答案】2【解析】【分析】由题等比数列的通项公式和求和公式列出式子即可求出数列的公比.【详解】当时,所以不符合题意;当时,所以所以即,解得.综上.故答案为:2.16.已知,,且(为常数).若的最小值为,则________.【答案】【解析】【分析】计算得出,可得,将代数式与相乘,绽开后利用基本不等式可求得的最小值,结合已知条件可得出关于实数的等式,进而可求得实数的值.【详解】因为,,则,所以,所以,则,因为,当且仅当时,等号成立,所以,解得.故答案为:.【点睛】易错点睛:利用基本不等式求最值时,要留意其必需满意的三个条件:(1)“一正二定三相等”“一正”就是各项必需为正数;(2)“二定”就是要求和的最小值,必需把构成和的二项之积转化成定值;要求积的最大值,则必需把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必需验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最简洁发生错误的地方.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.设为等差数列的前项和,,.(1)求的通项公式;(2)求的最小值及对应的值.【答案】(1);(2)当时,的值最小,且【解析】【分析】(1)利用等差数列的通项公式以及前项和公式即可求解.(2)利用等差数列前项和公式配方即可求最值.【详解】解:(1)设等差数列的公差为.由题意可得解得.故.(2)由(1)可得因为所以当时,取得最小值,最小值为18.某校数学爱好小组的同学为了解某电子元件的运用时长(单位:小时),从一批该电子元件中随机抽取100个进行调查,依据调查数据分为五组,得到的照率分布直方图如图所示.(1)估计这批电子元件运用时长的中位数;(2)若该电子元件的运用时长不低于400小时,则记为“一等品”,若这批电子元件有100000个,“一等品”的个数.【答案】(1);(2)40000.【解析】【分析】(1)由频率推断出中位数在内,则列出式子即可求出.(2)求出电子元件运用时长不低于小时的频率,即可得出答案.【详解】解:(1)因为,,所以中位数在内,则,解得;(2)由图可知样本中的电子元件运用时长不低于小时的频率是,则这批电子元件运用时长不低于小时的频率是,故这批电子元件中“一等品”的个数为.19.在中,角,,所对的边分别为,,.已知.(1)证明:是直角三角形.(2)若为的中点,且,求面积的最大值.【答案】(1)证明见解析;(2).【解析】【分析】(1)先利用正弦定理得出,再利用协助角公式得到,求出,即可得出答案;(2)先求出的值,再利用基本不等式得到,即可求解.【详解】(1)证明:因为所以.因为,所以,所以,所以,即,所以,因为,所以,所以,故,即是直角三角形;(2)因为,且,所以,所以.因为(当且仅当时等号成立),所以,即.故的面积,即面积的最大值为.20.如图,四棱锥的底面为正方形,平面平面,且,.(1)证明:平面;(2)求点到平面的距离.【答案】(1)证明见解析;(2).【解析】【分析】(1)由面面垂直的性质可得平面,进而可得,结合平面几何的学问可得,由线面垂直的判定即可得证;(2)取的中点,连接,,,作于,结合锥体的体积公式利用等体积法即可得解.【详解】(1)证明:∵平面平面,平面平面,,平面,∴平面,又∵平面,∴,在中,,,,∴,∵,,平面,∴平面;(2)设点到平面的距离为,取的中点,连接,,,作于,如图,则.∵平面平面,平面平面,∴平面,∵,,∴在中,,同理,,∴是等腰三角形,,由,∴,即,解得,∴点到平面的距离为.【点睛】关键点点睛:解决本题的关键是空间位置关系性质与判定的应用及等体积法解决点面距离.21.某商场为回馈客户,开展了为期天的促销活动.经统计,在这天中,第x天进入该商场的人次(单位:百人)近似满意,而人均消费(单位:元)与时间成一次函数,且第天的人均消费为元,最终一天的人均消费为元.(1)求该商场的日收入(单位:元)与时间的函数关系式;(2)求该商场第几天的日收入最少及日收入的最小值.【答案】(1);(2)该商场第天的日收入最少,最小值为元.【解析】【分析】(1)首先求出一次函数的表达式,然后由可得结论;(2)用基本不等式可求得最小值.【详解】(1)设由题意可得解得,则故(2)因为所以当且仅当时,等号成立则故该商场第天的日收入最少,且日收入的最小值是元.22.如图,在平面四边形中,,,,是等边三角形.(1)求(用含的式子表示)﹔(2)求的取值范围.【答案】(1);(2)【解析】【分析】(1)在中,利用正弦定理即可求解.(2)以点为坐标原点,为轴,过垂直与为轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年污水处理鼓风机项目申请报告
- 2024年天然气液化模块项目申请报告范稿
- 2024年氢氧化铬项目申请报告模板
- 2024年石油、化工产品批发服务项目提案报告
- 2024年全热交换器项目立项申请报告范文
- 金融担保服务相关行业投资规划报告
- 河北美术学院《电脑动画(TBS)》2021-2022学年第一学期期末试卷
- 柴油机陆地车辆用产业运行及前景预测报告
- 包裹分发中心行业市场前瞻与未来投资战略分析报告
- 抵押经纪行业风险投资态势及投融资策略指引报告
- 2024-2025学年人教版数学六年级上册 第五单元圆单元测试(含答案)
- 2024年资格考试-WSET二级认证考试近5年真题附答案
- 大药房《质量管理体系文件》-管理制度
- 2024至2030年中国空气主轴(气浮主轴)行业深度分析及发展趋势研究预测报告
- 食品风味研究专题智慧树知到期末考试答案章节答案2024年中国农业大学
- 16J914-1 公用建筑卫生间
- 短视频的拍摄与剪辑
- 2019上外附中直升考初三综合练习卷1(包含答案)
- 北师大版二年级数学上册应用题100题
- 颜真卿生平及书法艺术浅析重点
- 田忌赛马评课稿范文
评论
0/150
提交评论