专题10二次函数(原卷版+解析)_第1页
专题10二次函数(原卷版+解析)_第2页
专题10二次函数(原卷版+解析)_第3页
专题10二次函数(原卷版+解析)_第4页
专题10二次函数(原卷版+解析)_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题10二次函数二次函数的图象与性质1.(2021•杭州)已知y1和y2均是以x为自变量的函数,当x=m时,函数值分别是M1和M2,若存在实数m,使得M1+M2=0,则称函数y1和y2具有性质P.以下函数y1和y2具有性质P的是()A.y1=x2+2x和y2=﹣x﹣1 B.y1=x2+2x和y2=﹣x+1 C.y1=﹣和y2=﹣x﹣1 D.y1=﹣和y2=﹣x+12.(2022•杭州)已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是()A.命题① B.命题② C.命题③ D.命题④3.(2022•衢州)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为()A.或4 B.或﹣ C.﹣或4 D.﹣或44.(2022•绍兴)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是()A.0,4 B.1,5 C.1,﹣5 D.﹣1,55.(2023•台州)抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,若x1+x2<0,则直线y=ax+k一定经过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限6.(2021•杭州)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为()A. B. C. D.7.(2023•杭州)设二次函数y=ax2+bx+1(a≠0,b是实数).已知函数值y和自变量x的部分对应取值如下表所示:x…﹣10123…y…m1n1p…(1)若m=4,①求二次函数的表达式;②写出一个符合条件的x的取值范围,使得y随x的增大而减小.(2)若在m,n,p这三个实数中,只有一个是正数,求a的取值范围.8.(2022•宁波)点A(m﹣1,y1),B(m,y2)都在二次函数y=(x﹣1)2+n的图象上.若y1<y2,则m的取值范围为()A.m>2 B.m> C.m<1 D.<m<29.(2022•温州)已知点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,下列选项正确的是()A.若c<0,则a<c<b B.若c<0,则a<b<c C.若c>0,则a<c<b D.若c>0,则a<b<c10.(2023•丽水)已知点(﹣m,0)和(3m,0)在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图象上.(1)当m=﹣1时,求a和b的值;(2)若二次函数的图象经过点A(n,3)且点A不在坐标轴上,当﹣2<m<﹣1时,求n的取值范围;(3)求证:b2+4a=0.11.(2022•湖州)将抛物线y=x2向上平移3个单位,所得抛物线的解析式是()A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2 D.y=(x﹣3)2二次函数的最值12.(2023•杭州)设二次函数y=a(x﹣m)(x﹣m﹣k)(a>0,m,k是实数),则()A.当k=2时,函数y的最小值为﹣a B.当k=2时,函数y的最小值为﹣2a C.当k=4时,函数y的最小值为﹣a D.当k=4时,函数y的最小值为﹣2a13.(2022•嘉兴)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1 B. C.2 D.14.(2022•舟山)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A. B.2 C. D.115.(2023•绍兴)在平面直角坐标系xOy中,一个图形上的点都在一边平行于x轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x﹣2)2(0≤x≤3)的图象(抛物线中的实线部分),它的关联矩形为矩形OABC.若二次函数图象的关联矩形恰好也是矩形OABC,则b=.16.(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.待定系数法求二次函数解析式17.(2023•宁波)如图,已知二次函数y=x2+bx+c图象经过点A(1,﹣2)和B(0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤﹣2时,请根据图象直接写出x的取值范围.18.(2023•绍兴)已知二次函数y=﹣x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标;②当﹣1≤x≤3时,求y的取值范围;(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.19.(2021•杭州)在直角坐标系中,设函数y=ax2+bx+1(a,b是常数,a≠0).(1)若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式,并写出函数图象的顶点坐标;(2)写出一组a,b的值,使函数y=ax2+bx+1的图象与x轴有两个不同的交点,并说明理由.(3)已知a=b=1,当x=p,q(p,q是实数,p≠q)时,该函数对应的函数值分别为P,Q.若p+q=2,求证:P+Q>6.20.(2021•温州)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2,0).(1)求抛物线的函数表达式和顶点坐标.(2)直线l交抛物线于点A(﹣4,m),B(n,7),n为正数.若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.抛物线与x轴的交点21.(2023•宁波)已知二次函数y=ax2﹣(3a+1)x+3(a≠0),下列说法正确的是()A.点(1,2)在该函数的图象上 B.当a=1且﹣1≤x≤3时,0≤y≤8 C.该函数的图象与x轴一定有交点 D.当a>0时,该函数图象的对称轴一定在直线x=的左侧22.(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.23.(2021•宁波)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.二次函数的应用24.(2023•丽水)一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t﹣5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5 B.10 C.1 D.225.(2021•台州)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt﹣4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=.26.(2023•温州)一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?27.(2022•宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?28.(2021•金华)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.29.(2022•金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量y需求(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y需求=ax2+c,部分对应值如下表:售价x(元/千克)…2.533.54…需求量y需求(吨)…7.757.26.555.8…②该蔬菜供给量y供给(吨)关于售价x(元/千克)的函数表达式为y供给=x﹣1,函数图象见图1.③1~7月份该蔬菜售价x售价(元/千克)、成本x成本(元/千克)关于月份t的函数表达式分别为x售价=t+2,x成本=t2﹣t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.30.(2021•衢州)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求一条彩带长度的最小值.31.(2022•衢州)如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度v(m/s)从D点滑出,运动轨迹近似抛物线y=﹣ax2+2x+20(a≠0).某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.(1)求线段CE的函数表达式(写出x的取值范围).(2)当a=时,着陆点为P,求P的横坐标并判断成绩是否达标.(3)在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与v2的对应数据,在平面直角坐标系中描点如图3.①猜想a关于v2的函数类型,求函数表达式,并任选一对对应值验证.②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?(参考数据:≈1.73,≈2.24)32.(2022•温州)根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.33.(2022•台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m.①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.二次函数综合题34.(2023•金华)如图,直线y=与x轴,y轴分别交于点A,B,抛物线的顶点P在直线AB上,与x轴的交点为C,D,其中点C的坐标为(2,0),直线BC与直线PD相交于点E.(1)如图2,若抛物线经过原点O.①求该抛物线的函数表达式;②求的值.(2)连结PC,∠CPE与∠BAO能否相等?若能,求符合条件的点P的横坐标;若不能,试说明理由.35.(2022•舟山)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3.已知点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.36.(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.37.(2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.38.(2022•丽水)如图,已知点M(x1,y1),N(x2,y2)在二次函数y=a(x﹣2)2﹣1(a>0)的图象上,且x2﹣x1=3.(1)若二次函数的图象经过点(3,1).①求这个二次函数的表达式;②若y1=y2,求顶点到MN的距离;(2)当x1≤x≤x2时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.39.(2023•浙江)在二次函数y=x2﹣2tx+3(t>0)中.(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为﹣2,求出t的值;(3)如果A(m﹣2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3.求m的取值范围.

专题10二次函数二次函数的图象与性质1.(2021•杭州)已知y1和y2均是以x为自变量的函数,当x=m时,函数值分别是M1和M2,若存在实数m,使得M1+M2=0,则称函数y1和y2具有性质P.以下函数y1和y2具有性质P的是()A.y1=x2+2x和y2=﹣x﹣1 B.y1=x2+2x和y2=﹣x+1 C.y1=﹣和y2=﹣x﹣1 D.y1=﹣和y2=﹣x+1【分析】根据题干信息可知,直接令y1+y2=0,若方程有解,则具有性质P,若无解,则不具有性质P.【解答】解:A.令y1+y2=0,则x2+2x﹣x﹣1=0,解得x=或x=,即函数y1和y2具有性质P,符合题意;B.令y1+y2=0,则x2+2x﹣x+1=0,整理得,x2+x+1=0,方程无解,即函数y1和y2不具有性质P,不符合题意;C.令y1+y2=0,则﹣﹣x﹣1=0,整理得,x2+x+1=0,方程无解,即函数y1和y2不具有性质P,不符合题意;D.令y1+y2=0,则﹣﹣x+1=0,整理得,x2﹣x+1=0,方程无解,即函数y1和y2不具有性质P,不符合题意;故选:A.2.(2022•杭州)已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是()A.命题① B.命题② C.命题③ D.命题④【分析】命题④②③可以同时成立,由此即可判断.【解答】解:假设抛物线的对称轴为直线x=1,则﹣=1,解得a=﹣2,∵函数的图象经过点(3,0),∴3a+b+9=0,解得b=﹣3,故抛物线的解析式为y=x2﹣2x﹣3,当y=0时,得x2﹣2x﹣3=0,解得x=3或x=﹣1,故抛物线与x轴的交点为(﹣1,0)和(3,0),函数的图象与x轴的交点位于y轴的两侧;故命题②③④都是正确,①错误,故选:A.3.(2022•衢州)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为()A.或4 B.或﹣ C.﹣或4 D.﹣或4【分析】分两种情况讨论:当a>0时,﹣a=﹣4,解得a=4;当a<0时,在﹣1≤x≤4,9a﹣a=﹣4,解得a=﹣.【解答】解:y=a(x﹣1)2﹣a的对称轴为直线x=1,顶点坐标为(1,﹣a),当a>0时,在﹣1≤x≤4,函数有最小值﹣a,∵y的最小值为﹣4,∴﹣a=﹣4,∴a=4;当a<0时,在﹣1≤x≤4,当x=4时,函数有最小值,∴9a﹣a=﹣4,解得a=﹣;综上所述:a的值为4或﹣,故选:D.4.(2022•绍兴)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是()A.0,4 B.1,5 C.1,﹣5 D.﹣1,5【分析】根据抛物线y=x2+mx的对称轴为直线x=2,可以得到m的值,然后解方程即可.【解答】解:∵抛物线y=x2+mx的对称轴为直线x=2,∴﹣=2,解得m=﹣4,∴方程x2+mx=5可以写成x2﹣4x=5,∴x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,解得x1=5,x2=﹣1,故选:D.5.(2023•台州)抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,若x1+x2<0,则直线y=ax+k一定经过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限【分析】根据已知条件可得出ax2﹣kx﹣a=0,再利用根与系数的关系,分情况讨论即可.【解答】解:∵抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,∴kx=ax2﹣a,∴ax2﹣kx﹣a=0,∴,∴,当a>0,k<0时,直线y=ax+k经过第一、三、四象限,当a<0,k>0时,直线y=ax+k经过第一、二、四象限,综上,直线y=ax+k一定经过一、四象限.故选:D.6.(2021•杭州)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为()A. B. C. D.【分析】比较任意三个点组成的二次函数,比较开口方向,开口向下,则a<0,只需把开口向上的二次函数解析式求出即可.【解答】解:由图象知,A、B、D组成的二次函数图象开口向上,a>0;A、B、C组成的二次函数开口向上,a>0;B、C、D三点组成的二次函数开口向下,a<0;A、D、C三点组成的二次函数开口向下,a<0;即只需比较A、B、D组成的二次函数和A、B、C组成的二次函数即可.设A、B、C组成的二次函数为y1=a1x2+b1x+c1,把A(0,2),B(1,0),C(3,1)代入上式得,,解得a1=;设A、B、D组成的二次函数为y=ax2+bx+c,把A(0,2),B(1,0),D(2,3)代入上式得,,解得a=,即a最大的值为,也可以根据a的绝对值越大开口越小直接代入ABD三点计算,即可求求解.故选:A.7.(2023•杭州)设二次函数y=ax2+bx+1(a≠0,b是实数).已知函数值y和自变量x的部分对应取值如下表所示:x…﹣10123…y…m1n1p…(1)若m=4,①求二次函数的表达式;②写出一个符合条件的x的取值范围,使得y随x的增大而减小.(2)若在m,n,p这三个实数中,只有一个是正数,求a的取值范围.【分析】(1)①利用待定系数法即可求得;②利用二次函数的性质得出结论;(2)根据题意m<0,由﹣=1,得出b=﹣2a,则二次函数为y=ax2﹣2ax+1,得出m=a+2a+1<0,解得a<﹣.【解答】解:(1)①由题意得,解得,∴二次函数的表达式是y=x2﹣2x+1;②∵y=x2﹣2x+1=(x﹣1)2,∴抛物线开口向上,对称轴为直线x=1,∴当x<1时,y随x的增大而减小;(2)∵x=0和x=2时的函数值都是1,∴抛物线的对称轴为直线x=﹣=1,∴(1,n)是顶点,(﹣1,m)和(3,p)关于对称轴对称,若在m,n,p这三个实数中,只有一个是正数,则抛物线必须开口向下,且m≤0,∵﹣=1,∴b=﹣2a,∴二次函数为y=ax2﹣2ax+1,∴m=a+2a+1≤0,∴a≤﹣.8.(2022•宁波)点A(m﹣1,y1),B(m,y2)都在二次函数y=(x﹣1)2+n的图象上.若y1<y2,则m的取值范围为()A.m>2 B.m> C.m<1 D.<m<2【分析】根据y1<y2列出关于m的不等式即可解得答案.【解答】解:∵点A(m﹣1,y1),B(m,y2)都在二次函数y=(x﹣1)2+n的图象上,∴y1=(m﹣1﹣1)2+n=(m﹣2)2+n,y2=(m﹣1)2+n,∵y1<y2,∴(m﹣2)2+n<(m﹣1)2+n,∴(m﹣2)2﹣(m﹣1)2<0,即﹣2m+3<0,∴m>,故选:B.9.(2022•温州)已知点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,下列选项正确的是()A.若c<0,则a<c<b B.若c<0,则a<b<c C.若c>0,则a<c<b D.若c>0,则a<b<c【分析】根据题目中的抛物线和二次函数的性质,可以判断当c<0时,a、b、c的大小关系或当c>0时,a、b、c的大小关系.【解答】解:∵抛物线y=(x﹣1)2﹣2,∴该抛物线的对称轴为直线x=1,抛物线开口向上,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,∴若c<0,则c<a<b,故选项A、B均不符合题意;若c>0,则a<b<c,故选项C不符合题意,选项D符合题意;故选:D.10.(2023•丽水)已知点(﹣m,0)和(3m,0)在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图象上.(1)当m=﹣1时,求a和b的值;(2)若二次函数的图象经过点A(n,3)且点A不在坐标轴上,当﹣2<m<﹣1时,求n的取值范围;(3)求证:b2+4a=0.【分析】(1)当m=﹣1时,二次函数y=ax2+bx+3图象过点(1,0)和(﹣3,0),用待定系数法可得a的值是﹣1,b的值是﹣2;(2)y=ax2+bx+3图象过点(﹣m,0)和(3m,0),可知抛物线的对称轴为直线x=m,而y=ax2+bx+3的图象过点A(n,3),(0,3),且点A不在坐标轴上,可得m=,根据﹣2<m<﹣1,即得﹣4<n<﹣2;(3)由抛物线过(﹣m,0),(3m,0),可得﹣=m,b=﹣2am,把(﹣m,0),(3m,0)代入y=ax2+bx+3变形可得am2+1=0,故b2+4a=(﹣2am)2+4a=4a(am2+1)=4a×0=0.【解答】(1)解:当m=﹣1时,二次函数y=ax2+bx+3图象过点(1,0)和(﹣3,0),∴,∴解得,∴a的值是﹣1,b的值是﹣2;(2)解:∵y=ax2+bx+3图象过点(﹣m,0)和(3m,0),∴抛物线的对称轴为直线x=m,∵y=ax2+bx+3的图象过点A(n,3),(0,3),且点A不在坐标轴上,∴由图象的对称性得n=2m,∴m=,∵﹣2<m<﹣1,∴﹣2<<﹣1,∴﹣4<n<﹣2;(3)证明:∵抛物线过(﹣m,0),(3m,0),∴抛物线对称轴为直线x==m,∴﹣=m,∴b=﹣2am,把(﹣m,0),(3m,0)代入y=ax2+bx+3得:,①×3+②得:12am2+12=0,∴am2+1=0,∴b2+4a=(﹣2am)2+4a=4a(am2+1)=4a×0=0.11.(2022•湖州)将抛物线y=x2向上平移3个单位,所得抛物线的解析式是()A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2 D.y=(x﹣3)2【分析】根据二次函数变化规律:左加右减,上加下减,进而得出变化后解析式.【解答】解:∵抛物线y=x2向上平移3个单位,∴平移后的解析式为:y=x2+3.故选:A.二次函数的最值12.(2023•杭州)设二次函数y=a(x﹣m)(x﹣m﹣k)(a>0,m,k是实数),则()A.当k=2时,函数y的最小值为﹣a B.当k=2时,函数y的最小值为﹣2a C.当k=4时,函数y的最小值为﹣a D.当k=4时,函数y的最小值为﹣2a【分析】令y=0,求出二次函数与x轴的交点坐标,继而求出二次函数的对称轴,再代入二次函数解析式即可求出顶点的纵坐标,最后代入k的值进行判断即可.【解答】解:令y=0,则(x﹣m)(x﹣m﹣k)=0,∴x1=m,x2=m+k,∴二次函数y=a(x﹣m)(x﹣m﹣k)与x轴的交点坐标是(m,0),(m+k,0),∴二次函数的对称轴是:,∵a>0,∴y有最小值,当时y最小,即,当k=2时,函数y的最小值为;当k=4时,函数y的最小值为,故选:A.13.(2022•嘉兴)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1 B. C.2 D.【分析】由点A(a,b),B(4,c)在直线y=kx+3上,可得,即得ab=a(ak+3)=ka2+3a=k(a+)2﹣,根据ab的最大值为9,得k=﹣,即可求出c=2.【解答】解:∵点A(a,b),B(4,c)在直线y=kx+3上,∴,由①可得:ab=a(ak+3)=ka2+3a=k(a+)2﹣,∵ab的最大值为9,∴k<0,﹣=9,解得k=﹣,把k=﹣代入②得:4×(﹣)+3=c,∴c=2,故选:C.14.(2022•舟山)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A. B.2 C. D.1【分析】由点A(a,b),B(4,c)在直线y=kx+3上,可得,即得ab=a(ak+3)=ka2+3a=k(a+)2﹣,根据ab的最大值为9,得k=﹣,即可求出c=2.【解答】解:∵点A(a,b),B(4,c)在直线y=kx+3上,∴,由①可得:ab=a(ak+3)=ka2+3a=k(a+)2﹣,∵ab的最大值为9,∴k<0,﹣=9,解得k=﹣,把k=﹣代入②得:4×(﹣)+3=c,∴c=2,故选:B.15.(2023•绍兴)在平面直角坐标系xOy中,一个图形上的点都在一边平行于x轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x﹣2)2(0≤x≤3)的图象(抛物线中的实线部分),它的关联矩形为矩形OABC.若二次函数图象的关联矩形恰好也是矩形OABC,则b=或﹣.【分析】根据题意求得点A(3,0),B(3,4),C(0,4),然后分两种情况,利用待定系数法求出解析式即可.【解答】解:由y=(x﹣2)2(0≤x≤3),当x=0时,y=4,∴C(0,4),∵A(3,0),四边形ABCO是矩形,∴B(3,4),①当抛物线经过O、B时,将点O(0,0),B(3,4)代入y=x2+bx+c(0≤x≤3)得,解得b=;②当抛物线经过A、C时,将点A(3,0),C(0,4)代入y=x2+bx+c(0≤x≤3)得,解得b=﹣,综上所述,b=或b=﹣,故答案为:或﹣,16.(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【分析】(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y的最大值即可;(3)根据对称轴为x=﹣3,结合二次函数图象的性质,分类讨论得出m的取值范围即可.【解答】解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=或m=(舍去).综上所述,m=﹣2或.待定系数法求二次函数解析式17.(2023•宁波)如图,已知二次函数y=x2+bx+c图象经过点A(1,﹣2)和B(0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤﹣2时,请根据图象直接写出x的取值范围.【分析】(1)用待定系数法求出函数表达式,配成顶点式即可得顶点坐标;(2)求出A关于对称轴的对称点坐标,由图象直接可得答案.【解答】解:(1)把A(1,﹣2)和B(0,﹣5)代入y=x2+bx+c得:,解得,∴二次函数的表达式为y=x2+2x﹣5,∵y=x2+2x﹣5=(x+1)2﹣6,∴顶点坐标为(﹣1,﹣6);(2)如图:∵点A(1,﹣2)关于对称轴直线x=﹣1的对称点C(﹣3,﹣2),∴当y≤﹣2时,x的范围是﹣3≤x≤1.18.(2023•绍兴)已知二次函数y=﹣x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标;②当﹣1≤x≤3时,求y的取值范围;(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.【分析】(1)先把解析式进行配方,再求顶点;(2)根据函数的增减性求解;(3)根据函数的图象和系数的关系,结合图象求解.【解答】解:(1)①∵b=4,c=3时,∴y=﹣x2+4x+3=﹣(x﹣2)2+7,∴顶点坐标为(2,7).②∵﹣1≤x≤3中含有顶点(2,7),∴当x=2时,y有最大值7,∵2﹣(﹣1)>3﹣2,∴当x=﹣1时,y有最小值为:﹣2,∴当﹣1≤x≤3时,﹣2≤y≤7.(2)∵x≤0时,y的最大值为2;x>0时,y的最大值为3,∴抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线开口向下,x≤0时,y的最大值为2,∴c=2,又∵,∴b=±2,∵b>0,∴b=2.∴二次函数的表达式为y=﹣x2+2x+2.19.(2021•杭州)在直角坐标系中,设函数y=ax2+bx+1(a,b是常数,a≠0).(1)若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式,并写出函数图象的顶点坐标;(2)写出一组a,b的值,使函数y=ax2+bx+1的图象与x轴有两个不同的交点,并说明理由.(3)已知a=b=1,当x=p,q(p,q是实数,p≠q)时,该函数对应的函数值分别为P,Q.若p+q=2,求证:P+Q>6.【分析】(1)考查使用待定系数法求二次函数解析式,属于基础题,将两点坐标代入,解二元一次方程组即可;(2)写出一组a,b,使得b2﹣4ac>0即可;(3)已知a=b=1,则y=x2+x+1.容易得到P+Q=p2+p+1+q2+q+1,利用p+q=2,即p=2﹣q代入对代数式P+Q进行化简,并配方得出P+Q=2(q﹣1)2+6≥6.最后注意利用p≠q条件判断q≠1,得证.【解答】解:(1)由题意,得,解得,所以,该函数表达式为y=x2﹣2x+1.并且该函数图象的顶点坐标为(1,0).(2)例如a=1,b=3,此时y=x2+3x+1,∵b2﹣4ac=5>0,∴函数y=x2+3x+1的图象与x轴有两个不同的交点.(3)由题意,得P=p2+p+1,Q=q2+q+1,所以P+Q=p2+p+1+q2+q+1=p2+q2+4=(2﹣q)2+q2+4=2(q﹣1)2+6≥6,由条件p≠q,知q≠1.所以P+Q>6,得证.20.(2021•温州)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2,0).(1)求抛物线的函数表达式和顶点坐标.(2)直线l交抛物线于点A(﹣4,m),B(n,7),n为正数.若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.【分析】(1)将点(﹣2,0)代入求解.(2)分别求出点A,B坐标,根据图象开口方向及顶点坐标求解.【解答】解:(1)把(﹣2,0)代入y=ax2﹣2ax﹣8得0=4a+4a﹣8,解得a=1,∴抛物线的函数表达式为y=x2﹣2x﹣8,∵y=x2﹣2x﹣8=(x﹣1)2﹣9,∴抛物线顶点坐标为(1,﹣9).(2)把x=﹣4代入y=x2﹣2x﹣8得y=(﹣4)2﹣2×(﹣4)﹣8=16,∴m=16,把y=7代入函数解析式得7=x2﹣2x﹣8,解得x=5或x=﹣3,∴n=5或n=﹣3,∵n为正数,∴n=5,∴点A坐标为(﹣4,16),点B坐标为(5,7).∵抛物线开口向上,顶点坐标为(1,﹣9),∴抛物线顶点在AB下方,∴﹣4<xP<5,﹣9≤yP<16.抛物线与x轴的交点21.(2023•宁波)已知二次函数y=ax2﹣(3a+1)x+3(a≠0),下列说法正确的是()A.点(1,2)在该函数的图象上 B.当a=1且﹣1≤x≤3时,0≤y≤8 C.该函数的图象与x轴一定有交点 D.当a>0时,该函数图象的对称轴一定在直线x=的左侧【分析】将点(1,2)代入抛物线的解析式即可对选项A进行判断;将a=1代入抛物线的解析式求出顶点坐标为(2,﹣1),据此可对选项B进行判断;令y=0,则ax2﹣(3a+1)x+3=0,然后判断该方程判别式的符号即可对选项C进行判断;求出抛物线的解析式为:,然后根据a>0得,据此可对选项C进行判断.【解答】解:①对于y=ax2﹣(3a+1)x+3,当x=1时,y=a×12﹣(3a+1)×1+3=2﹣2a∵a≠0,∴y=2﹣2a≠2,∴点A(1,2)不在该函数的图象上,故选项A不正确;②当x=1时,抛物线的解析式为:y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),即当x=2时,y=﹣1<0,故得选项B不正确;③令y=0,则ax2﹣(3a+1)x+3=0,∵Δ=[﹣(3a+1)]2﹣4a×3=(3a﹣1)2≥0,∴该函数的图象与x轴一定有交点,故选项C正确;④∵该抛物线的对称轴为:,又∵a>0,∴,∴该抛物线的对称轴一定在直线的右侧,故选项D不正确.故选:C.22.(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【分析】(1)根据A、B两点的坐标特征,可设函数y1的表达式为y1=2(x﹣x1)(x﹣x2),其中x1,x2是抛物线与x轴交点的横坐标;(2)把函数y1=2(x﹣h)2﹣2,化成一般式,求出对应的b、c的值,再根据b+c式子的特点求出其最小值;(3)把y1,y2代入y=y1﹣y2求出y关于x的函数表达式,再根据其图象过点(x0,0),把(x0,0)代入其表达式,形成关于x0的一元二次方程,解方程即可.【解答】解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.∴抛物线的对称轴为直线x=﹣=.(2)把y1=2(x﹣h)2﹣2化成一般式得,y1=2x2﹣4hx+2h2﹣2.∴b=﹣4h,c=2h2﹣2.∴b+c=2h2﹣4h﹣2=2(h﹣1)2﹣4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是﹣4.(3)由题意得,y=y1﹣y2=2(x﹣m)(x﹣m﹣2)﹣(x﹣m)=(x﹣m)[2(x﹣m)﹣5].∵函数y的图象经过点(x0,0),∴(x0﹣m)[2(x0﹣m)﹣5]=0.∴x0﹣m=0,或2(x0﹣m)﹣5=0.即x0﹣m=0或x0﹣m=.23.(2021•宁波)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.【分析】(1)根据抛物线解析式得到抛物线与x轴的交点横坐标,结合抛物线的轴对称性质求得a的值即可.(2)将a的值代入,结合抛物线解析式求平移后图象所对应的二次函数的表达式.【解答】解:(1)由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴=2.解得a=3;(2)由(1)知,a=3,则该抛物线解析式是:y=x²﹣4x+3.∴抛物线向下平移3个单位后经过原点.∴平移后图象所对应的二次函数的表达式是y=x²﹣4x.二次函数的应用24.(2023•丽水)一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t﹣5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5 B.10 C.1 D.2【分析】根据二次函数的性质即可得到结论.【解答】解:令h=0,得:10t﹣5t2=0,解得:t=0或t=2,∴那么球弹起后又回到地面所花的时间是2秒;故选:D.25.(2021•台州)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt﹣4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=:1.【分析】利用h=vt﹣4.9t2,求出t1,t2,再根据h1=2h2,求出v1=v2,可得结论.【解答】解:由题意,t1=,t2=,h1==,h2==,∵h1=2h2,∴v1=v2,∴t1:t2=v1:v2=:1,故答案为::1.26.(2023•温州)一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?【分析】(1)求出抛物线的顶点坐标为(2,3),设抛物线为y=a(x﹣2)2+3,用待定系数法可得y=﹣(x﹣2)2+3;当x=0时,y=﹣×4+3=>2.44,知球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y=﹣(x﹣2﹣m)2+3,把点(0,2.25)代入得m=﹣5(舍去)或m=1,即知当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.【解答】解:(1)∵8﹣6=2,∴抛物线的顶点坐标为(2,3),设抛物线为y=a(x﹣2)2+3,把点A(8,0)代入得:36a+3=0,解得a=﹣,∴抛物线的函数表达式为y=﹣(x﹣2)2+3;当x=0时,y=﹣×4+3=>2.44,∴球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y=﹣(x﹣2﹣m)2+3,把点(0,2.25)代入得:2.25=﹣(0﹣2﹣m)2+3,解得m=﹣5(舍去)或m=1,∴当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.27.(2022•宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?【分析】(1)由每平方米种植的株数每增加1株,单株产量减少0.5千克,即可得y=4﹣0.5(x﹣2)=﹣0.5x+5,(2)设每平方米小番茄产量为W千克,由产量=每平方米种植株数×单株产量即可列函数关系式,由二次函数性质可得答案.【解答】解:(1)∵每平方米种植的株数每增加1株,单株产量减少0.5千克,∴y=4﹣0.5(x﹣2)=﹣0.5x+5,答:y关于x的函数表达式为y=﹣0.5x+5,(2≤x≤8,且x为整数);(2)设每平方米小番茄产量为W千克,根据题意得:W=x(﹣0.5x+5)=﹣0.5x2+5x=﹣0.5(x﹣5)2+12.5,∵﹣0.5<0,∴当x=5时,W取最大值,最大值为12.5,答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.28.(2021•金华)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.【分析】(1)利用二次函数图象上点的坐标特征可求出点A的坐标,进而可得出雕塑高OA的值;(2)利用二次函数图象上点的坐标特征可求出点D的坐标,进而可得出OD的长度,由喷出的水柱为抛物线且形状相同,可得出OC的长,结合CD=OC+OD即可求出落水点C,D之间的距离;(3)代入x=10求出y值,进而可得出点(10,)在抛物线y=﹣(x﹣5)2+6上,将与1.8比较后即可得出顶部F不会碰到水柱.【解答】解:(1)当x=0时,y=﹣×(0﹣5)2+6=,∴点A的坐标为(0,),∴雕塑高m.(2)当y=0时,﹣(x﹣5)2+6=0,解得:x1=﹣1(舍去),x2=11,∴点D的坐标为(11,0),∴OD=11m.∵从A点向四周喷水,喷出的水柱为抛物线,且形状相同,∴OC=OD=11m,∴CD=OC+OD=22m.(3)当x=10时,y=﹣×(10﹣5)2+6=,∴点(10,)在抛物线y=﹣(x﹣5)2+6上.又∵≈1.83>1.8,∴顶部F不会碰到水柱.29.(2022•金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量y需求(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y需求=ax2+c,部分对应值如下表:售价x(元/千克)…2.533.54…需求量y需求(吨)…7.757.26.555.8…②该蔬菜供给量y供给(吨)关于售价x(元/千克)的函数表达式为y供给=x﹣1,函数图象见图1.③1~7月份该蔬菜售价x售价(元/千克)、成本x成本(元/千克)关于月份t的函数表达式分别为x售价=t+2,x成本=t2﹣t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.【分析】(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w元,根据w=x售价﹣x成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x的值,再求出总利润即可.【解答】解:(1)把(3,7.2),(4,5.8)代入y需求=ax2+c,,②﹣①,得7a=﹣1.4,解得:a=﹣,把a=﹣代入①,得c=9,∴a的值为﹣,c的值为9;(2)设这种蔬菜每千克获利w元,根据题意,w=x售价﹣x成本=t+2﹣(t2﹣t+3)=﹣(t﹣4)2+3,∵﹣<0,且1≤t≤7,∴当t=4时,w有最大值,答:在4月份出售这种蔬菜每千克获利最大;(3)当y供给=y需求时,x﹣1=﹣x2+9,解得:x1=5,x2=﹣10(舍去),∴此时售价为5元/千克,则y供给=x﹣1=5﹣1=4(吨)=4000(千克),令t+2=5,解得t=6,∴w=﹣(t﹣4)2+3=﹣×(6﹣4)2+3=2,∴总利润为w•y=2×4000=8000(元),答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.30.(2021•衢州)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求一条彩带长度的最小值.【分析】(1)利用待定系数法求函数解析式,然后结合二次函数图象上点的坐标特征计算求解;(2)①由图象分析右边钢缆所在抛物线的顶点坐标为(6,1),然后利用待定系数法求函数解析式;②根据题意,列式y2﹣y1利用二次函数的性质求最值.【解答】解:(1)根据题意可知点F的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y1=a1x2.将F(6,﹣1.5)代入y1=a1x2有:﹣1.5=36a1,求得a1=,∴y1=x2,当x=12时,y1=×122=﹣6,∴桥拱顶部离水面高度为6m.(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x﹣6)2+1,将H(0,4)代入其表达式有:4=a2(0﹣6)2+1,求得a2=,∴右边钢缆所在抛物线表达式为:y2=(x﹣6)2+1,同理可得左边钢缆所在抛物线表达式为:y3=(x+6)2+1②设彩带的长度为Lm,则L=y2﹣y1=(x﹣6)2+1﹣(x2)==,∴当x=4时,L最小值=2,答:彩带长度的最小值是2m.31.(2022•衢州)如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度v(m/s)从D点滑出,运动轨迹近似抛物线y=﹣ax2+2x+20(a≠0).某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.(1)求线段CE的函数表达式(写出x的取值范围).(2)当a=时,着陆点为P,求P的横坐标并判断成绩是否达标.(3)在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与v2的对应数据,在平面直角坐标系中描点如图3.①猜想a关于v2的函数类型,求函数表达式,并任选一对对应值验证.②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?(参考数据:≈1.73,≈2.24)【分析】(1)由图2可知:C(8,16),E(40,0),利用待定系数法可得出结论;(2)当时,,联立,可得出点P的横坐标,比较即可得出结论;(3)①猜想a与v2成反比例函数关系.将(100,0.250)代入表达式,求出m的值即可.将(150,0.167)代入进行验证即可得出结论;②由K在线段上,得K(32,4),代入得y=﹣ax2+2x+20,得.由得v2=320,比较即可.【解答】解:(1)由图2可知:C(8,16),E(40,0),设CE:y=kx+b(k≠0),将C(8,16),E(40,0)代入得:,解得,∴线段CE的函数表达式为(8≤x≤40).(2)当时,,由题意得,解得x1=0(舍去),x2=22.5.∴P的横坐标为22.5.∵22.5<32,∴成绩未达标.(3)①猜想a与v2成反比例函数关系.∴设,将(100,0.250)代入得,解得m=25,∴.将(150,0.167)代入验证:,∴能相当精确地反映a与v2的关系,即为所求的函数表达式.②由K在线段上,得K(32,4),代入得y=﹣ax2+2x+20,得.由得v2=320,又∵v>0,∴.∴当v≈18m/s时,运动员的成绩恰能达标.32.(2022•温州)根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.【分析】任务1:利用待定系数法可得抛物线的函数表达式;任务2:根据该河段水位再涨1.8m达到最高,灯笼底部距离水面至少1m,灯笼长0.4m,计算悬挂点的纵坐标的最小值是﹣1.8m;任务3:介绍两种方案:分别挂7盏和8盏.【解答】解:任务1:以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且过点B(10,﹣5),设抛物线的解析式为:y=ax2,把点B(10,﹣5)代入得:100a=﹣5,∴a=﹣,∴抛物线的函数表达式为:y=﹣x2;任务2:∵该河段水位再涨1.8m达到最高,灯笼底部距离水面不小于1m,灯笼长0.4m,∴当悬挂点的纵坐标y≥﹣5+1.8+1+0.4=﹣1.8,即悬挂点的纵坐标的最小值是﹣1.8m,当y=﹣1.8时,﹣x2=﹣1.8,∴x=±6,∴悬挂点的横坐标的取值范围是:﹣6≤x≤6;任务3:方案一:如图2(坐标轴的横轴),从顶点处开始悬挂灯笼,∵﹣6≤x≤6,相邻两盏灯笼悬挂点的水平间距均为1.6m,∴若顶点一侧悬挂4盏灯笼时,1.6×4>6,若顶点一侧悬挂3盏灯笼时,1.6×3<6,∴顶点一侧最多悬挂3盏灯笼,∵灯笼挂满后成轴对称分布,∴共可挂7盏灯笼,∴最左边一盏灯笼的横坐标为:﹣1.6×3=﹣4.8;方案二:如图3,∵若顶点一侧悬挂5盏灯笼时,0.8+1.6×(5﹣1)>6,若顶点一侧悬挂4盏灯笼时,0.8+1.6×(4﹣1)<6,∴顶点一侧最多悬挂4盏灯笼,∵灯笼挂满后成轴对称分布,∴共可挂8盏灯笼,∴最左边一盏灯笼的横坐标为:﹣0.8﹣1.6×3=﹣5.6.33.(2022•台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m.①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.【分析】(1)①由顶点A(2,2)得,设y=a(x﹣2)2+2,再根据抛物线过点(0,1.5),可得a的值,从而解决问题;②由对称轴知点(0,1.5)的对称点为(4,1.5),则下边缘抛物线是由上边缘抛物线向左平移4cm得到的,可得点B的坐标;③根据EF=0.5,求出点F的坐标,利用增减性可得d的最大值为最小值,从而得出答案;(2)当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D、F恰好分别在两条抛物线上,故设点D(m,﹣(m+2)2+h+0.5),F(m+3,﹣(m+3﹣2)2+h+0.5),则有﹣[(m+3﹣2)2+h+0.5]﹣[﹣(m+2)2+h+0.5]=1,从而得出答案.【解答】解:(1)①如图1,由题意得A(2,2)是上边缘抛物线的顶点,设y=a(x﹣2)2+2,又∵抛物线过点(0,1.5),∴1.5=4a+2,∴a=﹣,∴上边缘抛物线的函数解析式为y=﹣(x﹣2)2+2,当y=0时,0=﹣(x﹣2)2+2,解得x1=6,x2=﹣2(舍去),∴喷出水的最大射程OC为6m;②∵对称轴为直线x=2,∴点(0,1.5)的对称点为(4,1.5),∴下边缘抛物线是由上边缘抛物线向左平移4m得到的,∴点B的坐标为(2,0);③∵EF=0.5,∴点F的纵坐标为0.5,∴0.5=﹣(x﹣2)2+2,解得x=2±2,∵x>0,∴x=2+2,当x>2时,y随x的增大而减小,∴当2≤x≤6时,要使y≥0.5,则x≤2+2,∵当0≤x≤2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+2,∵DE=3,灌溉车行驶时喷出的水能浇灌到整个绿化带,∴d的最大值为2+2﹣3=2﹣1,再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是d≥OB,∴d的最小值为2,综上所述,d的取值范围是2≤d≤2﹣1;(2)当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D、F恰好分别在两条抛物线上,设点D(m,﹣(m+2)2+h+0.5),F(m+3,﹣(m+3﹣2)2+h+0.5),则有﹣(m+3﹣2)2+h+0.5﹣[﹣(m+2)2+h+0.5]=1,解得m=2.5,∴点D的纵坐标为h﹣,∴h﹣=0,∴h的最小值为.二次函数综合题34.(2023•金华)如图,直线y=与x轴,y轴分别交于点A,B,抛物线的顶点P在直线AB上,与x轴的交点为C,D,其中点C的坐标为(2,0),直线BC与直线PD相交于点E.(1)如图2,若抛物线经过原点O.①求该抛物线的函数表达式;②求的值.(2)连结PC,∠CPE与∠BAO能否相等?若能,求符合条件的点P的横坐标;若不能,试说明理由.【分析】(1)①由抛物线经过原点O(0,0)、C(2,0),可得抛物线的顶点P(1,),利用待定系数法可得抛物线的函数表达式为y=﹣x2+3x;②先求出A(﹣2,0),B(0,),运用待定系数法可得直线OP的解析式为y=x,过点B作BF∥x轴交OP于点F,F(,),可得BF=,再由BF∥OC,得出△BEF∽△CEO,进而可得===;(2)过点P作PF⊥x轴于点F,设P(m,m+),则F(m,0),利用勾股定理可得AP2=AF2+PF2=(m+2)2+(m+)2=m2+9m+9,若∠CPE=∠BAO,可得△CPD∽△CAP,得出∠CDP=∠CPA,再结合∠CDP=∠ACP,可得∠PCD=∠CPA,进而可得AP=AC,建立方程求解即可得出答案.【解答】解:(1)①∵抛物线经过原点O(0,0)、C(2,0),∴对称轴为直线x=1,当x=1时,y=×1+=,∴抛物线的顶点P(1,),设抛物线的解析式为y=a(x﹣1)2+,把C(2,0)代入,得a+=0,解得:a=﹣,∴y=﹣(x﹣1)2+=﹣x2+3x,∴该抛物线的函数表达式为y=﹣x2+3x;②∵直线y=与x轴,y轴分别交于点A,B,∴A(﹣2,0),B(0,),设直线OP的解析式为y=kx,把P(1,)代入,得:k=,∴直线OP的解析式为y=x,如图,过点B作BF∥x轴交OP于点F,则点F的纵坐标与点B的纵坐标相同,∴=x,解得:x=,∴F(,),∴BF=,∵BF∥OC,∴△BEF∽△CEO,∴===,∴的值为.(2)如图,过点P作PF⊥x轴于点F,设P(m,m+),则F(m,0),∴PF=m+,AF=m﹣(﹣2)=m+2,AC=2﹣(﹣2)=4,在Rt△APF中,AP2=AF2+PF2=(m+2)2+(m+)2=m2+9m+9,若∠CPE=∠BAO,∵∠PCD=∠ACP,∴△CPD∽△CAP,∴∠CDP=∠CPA,∵PC=PD,∴∠CDP=∠ACP,∴∠PCD=∠CPA,∴AP=AC,∴m2+9m+9=16,解得:m1=﹣(舍去),m2=,∴∠CPE与∠BAO能相等,点P的横坐标为.35.(2022•舟山)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3.已知点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.【分析】(1)把A(1,0)代入y=a(x+1)2﹣4即可解得抛物线L1的函数表达式为y=x2+2x﹣3;(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2,顶点为(﹣1,﹣4+m),关于原点的对称点为(1,4﹣m),代入y=x2+2x﹣3可解得m的值为4;(3)把抛物线L1向右平移n(n>0)个单位得抛物线L3为y=(x﹣n+1)2﹣4,根据点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,当t>6时,s>r,可得[(9﹣t﹣n)2﹣4]﹣[(t﹣n﹣3)2﹣4]>0,即可解得n的取值范围是n>3.【解答】解:(1)把A(1,0)代入y=a(x+1)2﹣4得:a(1+1)2﹣4=0,解得a=1,∴y=(x+1)2﹣4=x2+2x﹣3;答:抛物线L1的函数表达式为y=x2+2x﹣3;(2)抛物线L1:y=(x+1)2﹣4的顶点为(﹣1,﹣4),将抛物线L1向上平移m(m>0)个单位得到抛物线L2,则抛物线L2的顶点为(﹣1,﹣4+m),而(﹣1,﹣4+m)关于原点的对称点为(1,4﹣m),把(1,4﹣m)代入y=x2+2x﹣3得:12+2×1﹣3=4﹣m,解得m=4,答:m的值为4;(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,抛物线L3解析式为y=(x﹣n+1)2﹣4,∵点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,∴s=(8﹣t﹣n+1)2﹣4=(9﹣t﹣n)2﹣4,r=(t﹣4﹣n+1)2﹣4=(t﹣n﹣3)2﹣4,∵当t>6时,s>r,∴s﹣r>0,∴[(9﹣t﹣n)2﹣4]﹣[(t﹣n﹣3)2﹣4]>0,整理变形得:(9﹣t﹣n)2﹣(t﹣n﹣3)2>0,(9﹣t﹣n+t﹣n﹣3)(9﹣t﹣n﹣t+n+3)>0,(6﹣2n)(12﹣2t)>0,∵t>6,∴12﹣2t<0,∴6﹣2n<0,解得n>3,∴n的取值范围是n>3.36.(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.【分析】(1)把(1,0)代入抛物线的解析式求出a即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论