版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024年北京市燕山区九上数学开学质量跟踪监视模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,已知平行四边形,,分别是,边上的点,,分别是,的中点,若点在边上从向移动,点不动,那么下列结论成立的是()A. B.线段的长度逐渐变小C.线段的长度保持不变 D.线段的长度逐渐变大2、(4分)在反比例函数y图象上有三个点,若x1<0<x2<x3,则下列结论正确的是()A. B. C. D.3、(4分)下列调查,比较适合使用普查方式的是()A.某品牌灯泡使用寿命 B.长江水质情况C.中秋节期间市场上的月饼质量情况 D.乘坐地铁的安检4、(4分)测试5位学生“一分钟跳绳”成绩,得到5个各不相同的数据.在统计时,出现了一处错误:将最高成绩120个写成了180个。以下统计量不受影响的是()A.方差 B.标准差 C.平均数 D.中位数5、(4分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.30° B.45° C.55° D.60°6、(4分)点(3,-4)到x轴的距离为()A.3B.4C.5D.-47、(4分)在2008年的一次抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中10人的捐款分别是:5万,8万,10万,10万,10万,20万,20万,30万,50万,100万.这组数据的众数和中位数分别是()A.10万,15万 B.10万,20万 C.20万,15万 D.20万,10万8、(4分)化简的结果是()A. B. C.1 D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,矩形ABCD中,AB=4,BC=8,对角线AC的垂直平分线分别交AD、BC于点E.F,连接CE,则△DCE的面积为___.10、(4分)如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.11、(4分)一名主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20m,这名主持人现在站在A处(如图所示),则它应至少再走_____m才最理想.(可保留根号).12、(4分)如图,DE为Rt△ABC的中位线,点F在DE上,且∠AFB=∠BAC=90°,若AB=4,AC=8,则EF的长为____.(结果保留根号)13、(4分)如图,把R1,R2,R3三个电阻串联起来,线路AB上的电流为I,电压为U,则U=IR1+IR2+IR3,当R1=18.3,R2=17.6,R3=19.1,U=220时,I的值为___________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在矩形ABCD中,AB=4,AD=10,点E在AD边上,已知B、E两点关于直线l对称,直线l分别交AD、BC边于点M、N,连接BM、NE.(1)求证:四边形BMEN是菱形;(2)若DE=2,求NC的长.15、(8分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.(1)请依据图表中的数据,求a,b的值.(2)直接写出表中的m=,n=.(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.16、(8分)如图,在▱ABCD中,E是BC延长线上的一点,且DE=AB,连接AE、BD,证明AE=BD.17、(10分)如图,直线与直线相交于点A(3,1),与x轴交于点B.(1)求k的值;(2)不等式的解集是________________.18、(10分)已知:如图,在四边形ABCD中,过A,C分别作AD和BC的垂线,交对角线BD于点E,F,AE=CF,BE=DF.(1)求证:四边形ABCD是平行四边形;(2)若BC=4,∠CBD=45°,且E,F是BD的三等分点,求四边形ABCD的面积.(直接写出结论即可)B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b<0的解集是___.20、(4分)直线y=2x+1经过点(a,0),则a=________.21、(4分)如图,两个大小完全相同的矩形ABCD和AEFG中AB=4cm,BC=3cm,则FC=_____.22、(4分)如图,在中,,平分,点为中点,则_____.23、(4分)一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是.二、解答题(本大题共3个小题,共30分)24、(8分)已知y-2与x+3成正比例,且当x=-4时,y=0,求当x=-1时,y的值.25、(10分)已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;①求证:点F是AD的中点;②判断BE与CF的数量关系和位置关系,并说明理由;(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.26、(12分)抛物线y=x2+bx+c的对称轴为直线x=1,该抛物线与x轴的两个交点分别为A和B,与y轴的交点为C,其中A(-1,0).(1)写出B点的坐标;(2)求抛物线的函数解析式;(3)若抛物线上存在一点P,使得△POC的面积是△BOC的面积的2倍,求点P的坐标;(4)点M是线段BC上一点,过点M作x轴的垂线交抛物线于点D,求线段MD长度的最大值.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.【详解】如图,连接AR,
∵E、F分别是PA、PR的中点,
∴EF=AR,
∴EF的长不变,
故选:C.考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.2、B【解析】
根据反比例函数的性质及反比例函数图象上点的坐标特征解得即可.【详解】∵k=-2019<0,∴反比例函数y的图象在二、四象限,在每个象限内,y随x的增大而增大,∵点在反比例函数y图象上,x1<0<x2<x3,∴y1>0,y2<0,y3<0,∴y2<y3<y1,故选B.本题考查了反比例函数y=的性质,k>0时,图象在一、三象限,在各象限内,y随x的增大而减小;k<0时,图象在二、四象限,在各象限内,y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.3、D【解析】
一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】A、某品牌灯泡使用寿命,具有破坏性,适宜于抽样调查,故A错误;B、长江水质情况,所费人力、物力和时间较多,适宜于抽样调查,故B错误;C、中秋节期间市场上的月饼质量情况,适宜于抽样调查,故C错误;D、乘坐地铁的安检,适宜于全面调查,故D正确;故选:D.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、D【解析】
根据方差,平均数,标准差和中位数的定义和计算方法可得答案.【详解】解:在方差和标准差的计算过程中都需要用到数据的平均数,C选项又是平均数,也就是说四个选项有三个跟平均数有关,而平均数的大小和每个数据都有关系,一旦某个数据改变了,平均数肯定会随之改变,而中位数是整组数据从小到大排列后取其中间的数(偶数个数据时取最中间2数的平均数)作为中位数,该事件中虽然最大数120变为180.但并不影响中间数的大小和位置,所以综上所述,不受影响的应该是中位数.故选:D.本题主要考查方差、标准差、中位数和平均数,解题的关键是掌握各统计量的定义和计算方法.5、B【解析】
先设,根据题意得出,然后根据等腰三角形性质,,最后根据即可求解.【详解】解:设,∵四边形ABCD是正方形,∴,∵,∴,∴,,,∴.故选B.本题主要考查正方形的性质、等腰三角形的性质,利用方程思想求解是关键.6、B【解析】分析:-4的绝对值即为点P到x轴的距离.详解:∵点P到x轴的距离为其纵坐标的绝对值即|−4|=4,∴点P到x轴的距离为4.故选B.点睛:本题考查了点的坐标,用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.7、A【解析】
根据众数、中位数的定义进行判断即可【详解】解:10万出现次数最多为3次,10万为众数;
从小到大排列的第5,6两个数分别为10万,20万,其平均值即中位数为15万.
故选:A.本题考查数据的众数与中位数的判断,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个,解题时要细心.8、B【解析】
根据二次根式的性质可得=∣∣,然后去绝对值符号即可.【详解】解:=∣∣=,故选:B.本题主要考查二次根式的化简,解此题的关键在于熟记二次根式的性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、6【解析】
根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算,再利用三角形面积公式解答即可.【详解】∵四边形ABCD是矩形,∴CD=AB=4,AD=BC=8,∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD−AE=8−x,在Rt△CDE中,CE=CD+ED,即x=4+(8−x),解得:x=5,即CE的长为5,DE=8−5=3,所以△DCE的面积=×3×4=6,故答案为:6.此题考查线段垂直平分线的性质,矩形的性质,解题关键在于得出AE=CE.10、1.【解析】
根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.【详解】解:y=x-4,
当y=0时,x-4=0,
解得:x=4,
即OA=4,
过B作BC⊥OA于C,
∵△OAB是以OA为斜边的等腰直角三角形,
∴BC=OC=AC=2,
即B点的坐标是(2,2),
设平移的距离为a,
则B点的对称点B′的坐标为(a+2,2),
代入y=x-4得:2=(a+2)-4,
解得:a=4,
即△OAB平移的距离是4,
∴Rt△OAB扫过的面积为:4×2=1,
故答案为:1.本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.11、(30﹣10)【解析】
AB的黄金分割点有两个,一种情况是AC<BC,一种是AC>BC,当AC<BC时走的路程最小,由此根据黄金分割的意义进行求解即可.【详解】如图所示:则,即(20−AC):20=(−1):2,解得AC=30−10.∴他应至少再走30−10米才最理想,故答案为:30−10.本题考查黄金分割的知识,熟练掌握黄金分割比例即可解答.12、【解析】
首先在Rt△ABC中,由勾股定理求出BC的长,然后利用中位线定理求出DE的长,再利用直角三角形斜边上的中线等于斜边的一半求出DF的长,进而求出EF的长.【详解】∵∠BAC=90°,AB=4,AC=8,∴BC===∵DE为Rt△ABC的中位线,∴DE=BC=,∵∠AFB=90º,∴DF=AB=2,∴EF=DE-DF=,故答案为:.本题主要考查三角形的基本概念和直角三角形的性质,掌握直角三角形的性质是解答本题的关键.13、1【解析】
直接把已知数据代入进而求出答案.【详解】解:由题意可得:U=IR1+IR2+IR3=I(R1+R2+R3),当R1=18.3,R2=17.6,R3=19.1,U=220时,I(18.3+17.6+19.1)=220解得:I=1故答案为:1.此题主要考查了代数式求值,正确代入相关数据是解题关键.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)NC=1.【解析】
(1)根据B、E两点关于直线l对称,可得BM=ME,BN=NE,再根据矩形的性质可得BM=BN,从而得出BM=ME=BN=NE,通过四边相等的四边形是菱形即可得出结论;(2)菱形边长为x,利用勾股定理计算即可.【详解】(1)∵B、E两点关于直线l对称∴BM=ME,BN=NE,∠BMN=∠EMN在矩形ABCD中,AD∥BC∴∠EMN=∠MNB∴∠BMN=∠MNB∴BM=BN∴BM=ME=BN=NE∴四边形ECBF是菱形.(2)设菱形边长为x则AM=8-x在Rt△ABM中,∴x=1.∴NC=1.本题考查了轴对称的性质及勾股定理的应用,解题的关键是熟记轴对称的性质.15、(1)a=5,b=1;(2)m=6,n=20%;(3)答案见解析.【解析】试题分析:(1)根据题意可以得到关于a、b的方程组,从而可以求得a、b的值;(2)根据表格可以得到m和n的值;(3)根据表格中的平均数和中位数进行说明即可解答本题.试题解析:解:(1)由题意和图表中的数据,可得:,即,解得:;(2)七年级的中位数m=6,优秀率n=2÷10=20%;(3)八年级队成绩比七年级队好的理由:①八年级队的平均分比七年级队高,说明八年级队总成绩比七年级队的总成绩好.②中位数七年级队是6,八年级队是7.5,说明八年级队半数以上的学生比七年级队半数以上的成绩好.点睛:本题考查条形统计图、中位数、方差,解题的关键是明确题意,找出所求问题需要的条件.16、见解析【解析】
首先根据平行四边形的性质可得AB=CD,AB∥CD,再根据等腰三角形的性质可得∠DCE=∠DEC,即可证明△ABE≌△DEB,再根据全等三角形性质可得到结论.【详解】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∵DE=AB,∴DE=DC.∴∠DCE=∠DEC,∵AB∥DC,∴∠ABC=∠DCE.∴∠ABC=∠DEC.在△ABE与△DEB中,∴△ABE≌△DEB(SAS).∴AE=BD.本题考查了平行四边形的性质,全等三角形的判定和性质,以及等腰三角形的性质,解题的关键是根据图中角的关系,找出证明全等的条件.17、(1);(2)x>3.【解析】
(1)根据直线y=kx+2与直线相交于点A(3,1),与x轴交于点B可以求得k的值和点B的坐标;
(2)根据函数图象可以直接写出不等式kx+2<的解集.【详解】(1),解得:(2),解得:x>3本题考查一次函数与一元一次不等式,解题的关键是明确题意,利用数形结合的思想解答问题.18、(1)证明见解析;(2)1.【解析】
(1)证Rt△ADE≌Rt△CBF(HL),得AD=BC,∠ADE=∠CBF,AD∥BC,故四边形ABCD是平行四边形;(2)过C作CH⊥BD于H,证△CBF是等腰直角三角形,得BF=BC=4,CH=BC=2,得BD=6,故四边形ABCD的面积=BD•CH.【详解】(1)证明:∵AE⊥AD,CF⊥BC,∴∠DAE=∠BCF=90°,∵BE=DF,∴BE+EF=DF+EF,即BF=DE,在Rt△ADE与Rt△CBF中,∴Rt△ADE≌Rt△CBF(HL),∴AD=BC,∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形;(2)解:过C作CH⊥BD于H,∵∠CBD=45°,∴△CBF是等腰直角三角形,∴BF=BC=4,CH=BC=2,∵E,F是BD的三等分点,∴BD=6,∴四边形ABCD的面积=BD•CH=1.熟记平行四边形的判定和性质是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、x<−2.【解析】
由图象可知kx+b=0的解为x=-2,所以kx+b<0的解集也可观察出来.【详解】从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−2,0),并且函数值y随x的增大而增大,因而不等式kx+b<0的解集是x<−2.故答案为:x<−2.此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.20、【解析】
代入点的坐标,求出a的值即可.【详解】将(a,0)代入直线方程得:2a+1=0解得,a=,故答案.本题考查了直线方程问题,考查函数代入求值,是一道常规题.21、5cm【解析】
利用勾股定理列式求出AC的长度,再根据两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,然后判断出△ACF是等腰直角三角形,再利用等边三角形的性质求解即可.【详解】∵矩形ABCD中,AB=4cm,BC=3cm,∴AC===5cm,∵矩形ABCD和AEFG是两个大小完全相同的矩形,∴AC=AF,∠BAC+∠GAF=90°,∴△ACF是等腰直角三角形,∴FC=AC=5cm.故答案为5cm.本题考查了矩形的对角线相等,每一个角都是直角的性质,勾股定理应用,判断出△ACF是等腰直角三角形是解题的关键.22、1【解析】
根据等腰三角形的三线合一得到∠ADC=90°,根据直角三角形的性质计算即可.【详解】解:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠ADC=90°,点E为AC中点,
∴DE=AC=1,
故答案为:1.本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.23、1.【解析】解不等式组得,3≤x<1,∵x是整数,∴x=3或2.当x=3时,3,2,6,8,x的中位数是2(不合题意舍去);当x=2时,3,2,6,8,x的中位数是2,符合题意.∴这组数据的平均数可能是(3+2+6+8+2)÷1=1.二、解答题(本大题共3个小题,共30分)24、2.【解析】
利用正比例函数的定义,设y-1=k(x+3),然后把已知的对应值代入求出k得到y与x之间的函数关系式;计算自变量为-1对应的y的值即可【详解】由题意,设
y-1=k(x+3)(k≠0),得:0-1=k(-4+3).解得:k=1.所以当x=-1时,y=1(-1+3)+1=2.即当x=-1时,y的值为2.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.25、(1)①证明见解析;②BE=2CF,BE⊥CF;(2)仍然有BE=2CF,BE⊥CF.【解析】
(1)①如图1,由AF=CF得到∠1=∠2,则利用等角的余角相等可得∠3=∠ADC,然后根据等腰三角形的判定定理得FD=FC,易得AF=FD;
②先利用等腰直角三角形的性质得CA=CB,CD=CE,则可证明△ADC≌△BEC得到AD=BE,∠1=∠CBE,由于AD=2CF,∠1=∠2,则BE=2CF,再证明∠CBE+∠3=90°,于是可判断CF⊥BE;
(2)延长CF到G使FG=CF,连结AG、DG,如图2,易得四边形ACDG为平行四边形,则AG=CD,AG∥CD,于是根据平行线的性质得∠GAC=180°-∠ACD,所以CD=CE=AG,再根据旋转的性质得∠BCD=α,所以∠BCE=∠DCE+∠BCD=90°+α=90°+90°-∠ACD=180°-∠ACD,得到∠GAC=∠ECB,接着可证明△AGC≌△CEB,得到CG=BE,∠2=∠1,所以BE=2CF,和前面一样可证得CF⊥BE.【详解】(1)①证明:如图1,∵AF=CF,∴∠1=∠2,∵∠1+∠ADC=90°,∠2+∠3=90°,∴∠3=∠ADC,∴FD=FC,∴AF=FD,即点F是AD的中点;②BE=2CF,BE⊥CF.理由如下:∵△ABC和△DEC都是等腰直角三角形,∴CA=CB,CD=CE,在△ADC和△BEC中,∴△ADC≌△BEC,∴AD=BE,∠1=∠CBE,而AD=2CF,∠1=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鸟眼病的诊断与治疗
- 合成材料制造过程中的安全与危险源控制考核试卷
- 天然气开采业市场前景展望考核试卷
- 信息系统的农业与农村发展考核试卷
- 人力资源信息系统与数字化管理考核试卷
- 机场出行巴士租赁合同
- 医疗中心净水机租赁合同协议书
- 矿产品加工招投标模拟探讨
- 大型商场庆典舞蹈演员协议
- 酒店建设临建房施工协议
- 人教版高中物理(必修三)同步讲义+练习第十一章 电路及其应用(含解析)
- 重症医学专业医疗质量控制指标(2024年版)学习解读课件
- 2024年军队文职统一考试《专业科目》管理学试卷(网友回忆版)含解析
- GB/T 44456-2024电子竞技场馆运营服务规范
- 高中英语必背3500单词表
- 2024年全国职业院校技能大赛中职组(装配式建筑构件安装赛项)考试题库(含答案)
- 2024年全国职业院校技能大赛高职组(建筑装饰数字化施工赛项)备赛试题库含答
- 2024国机资本控股限公司招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- DB11-T854-2023占道作业交通安全设施设置技术要求
- DB32T 2618-2023 高速公路工程施工安全技术规范
- 2024年广东省高中学业水平合格考语文试卷真题(含答案详解)
评论
0/150
提交评论