2024-2025学年云南省巧家县九上数学开学质量检测模拟试题【含答案】_第1页
2024-2025学年云南省巧家县九上数学开学质量检测模拟试题【含答案】_第2页
2024-2025学年云南省巧家县九上数学开学质量检测模拟试题【含答案】_第3页
2024-2025学年云南省巧家县九上数学开学质量检测模拟试题【含答案】_第4页
2024-2025学年云南省巧家县九上数学开学质量检测模拟试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年云南省巧家县九上数学开学质量检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.2、(4分)如图,矩形纸片ABCD中,BC=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则ΔABC的面积为(A.16cm2 B.20cm23、(4分)如图,在平面直角坐标系中,点的坐标为,点的坐标为,以点为圆心,长为半径画弧,交轴的负半轴于点,则点的坐标为()A. B. C. D.4、(4分)下列各式正确的是(

)A.32=±3

B.(-3)2=±3

C.(-3)2=3

D.(-3)25、(4分)某汽车制造厂为了使顾客了解一种新车的耗油量,公布了调查20辆该车每辆行驶100千米的耗油量,在这个问题中总体是()A.所有该种新车的100千米耗油量 B.20辆该种新车的100千米耗油量C.所有该种新车 D.20辆汽车6、(4分)下面的两个三角形一定全等的是()A.腰相等的两个等腰三角形B.一个角对应相等的两个等腰三角形C.斜边对应相等的两个直角三角形D.底边相等的两个等腰直角三角形7、(4分)不等式2x-1≤3的解集是()A.x≤1 B.x≤2 C.x≥1 D.x≤-28、(4分)某学校改造一个边长为5米的正方形花坛,经规划后,南北方向要缩短x米(0<x<5),东西方向要加长x米,则改造后花坛的面积与原来的花坛面积相比()A.增加了x平方米 B.减少了2x平方米C.保持不变 D.减少了x2平方米二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x尺,可列方程为_____.10、(4分)如图,在四边形ABCD中,对角线AC、BD互相垂直平分,若使四边形ABCD是正方形,则需要再添加的一个条件为___________.(图形中不再添加辅助线,写出一个条件即可)11、(4分)3-1×12、(4分)一组数据为1,2,3,4,5,6,则这组数据的中位数是______.13、(4分)已知一组数据为1,10,6,4,7,4,则这组数据的中位数为________________.三、解答题(本大题共5个小题,共48分)14、(12分)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)

(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.

①求证:PG=PF;

②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.

(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.

15、(8分)计算下列各题(1)(2)16、(8分)如图,是由边长为1的小正方形组成的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形,图中已给出△ABC的一边AB的位置.(1)请在所给的网格中画出边长分别为2,25,4的一个格点△ABC(2)根据所给数据说明△ABC是直角三角形.17、(10分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.已知:在四边形ABCD中,____________.求证:四边形ABCD是平行四边形.18、(10分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)分解因式:x3-3x=______.20、(4分)如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为___.21、(4分)二项方程在实数范围内的解是_______________22、(4分)实数a在数轴上的位置如图示,化简:_____.23、(4分)如图,是的中位线,平分交于,,则的长为________.二、解答题(本大题共3个小题,共30分)24、(8分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?25、(10分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的性状,并说明理由;(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.26、(12分)如图,在平行四边形ABCD中,AC是它的一条对角线,BE⊥AC于点E,DF⊥AC于点F,求证:四边形BEDF是平行四边形.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

轴对称图形是把一个图形沿一条直线折叠,直线两旁的部分能够互相重合,判断四个图形,看看哪些是轴对称图形;中心对称图形是把一个图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合,判断四个图形,看看哪些是中心对称图形;综合上述分析,即可选出既是中心对称图形又是轴对称图形的图形,从而解答本题.【详解】A、是轴对称图形,但不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,但不是中心对称图形,不符合题意;D、既是中心对称图形,又是轴对称图形,符合题意.故选D.此题考查中心对称图形和轴对称图形,解决本题的关键是熟练地掌握中心对称图形和轴对称图形的判断方法;2、A【解析】

由矩形的性质可得∠B=90°,AB∥CD,可得∠DCA=∠CAB,由折叠的性质可得BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB=∠DCA,可得AO=OC=5cm,由勾股定理可求OE的长,即可求△ABC的面积.【详解】解:∵四边形ABCD是矩形∴∠B=90°,AB∥CD∴∠DCA=∠CAB∵把纸片ABCD沿直线AC折叠,点B落在E处,∴BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB,∴∠DCA=∠EAC∴AO=OC=5cm∴OE=∴AE=AO+OE=8cm,∴AB=8cm,∴△ABC的面积=12×AB×BC=16cm2故选:A.本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.3、B【解析】

先根据勾股定理求出AB的长,由于AB=AC,可求出AC的长,再根据点C在x轴的负半轴上即可得出结论.【详解】解:∵点A的坐标为(4,0),点的坐标为(0,3),∴OA=4,OB=3,∴AB==5,∵以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,∴AC=5,∴OC=1,∴点C的坐标为(-1,0).故选B.本题考查的是勾股定理在直角坐标系中的运用,根据题意利用勾股定理求出AC的长是解答此题的关键.4、C【解析】

根据二次根式的性质a2【详解】解:A.32=3B.(-3)2=3C.(-3)2=32=3,D.(-3)2=32故选C.本题考查了二次根式的性质与化简.熟练掌握二次根式的性质a25、A【解析】

首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:在这个问题中总体是:所有该种新车的100千米耗油量;样本是:20辆该种新车的100千米耗油量;样本容量为:20个体为:每辆该种新车的100千米耗油量;故选:A.本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6、D【解析】解:A.错误,腰相等的两个等腰三角形,没有明确顶角和底角的度数,所以不一定全等.B.错误,一个角对应相等的两个等腰三角形,没有明确边的长度是否相等,所以不一定全等.C.错误,斜边对应相等的两个直角三角形,没有明确直角三角形的直角边大小,所以不一定全等.D.正确,底边相等的两个等腰直角三角形,明确了各个角的度数,以及一个边,符合ASA或AAS,所以,满足此条件的三角形一定全等.故选D.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、B【解析】

首先移项,把-1移到不等式的右边,注意要变号,然后合并同类项,再把x的系数化为1,即可求出不等式的解集.【详解】解:2x-1≤3,

移项得:2x≤3+1,

合并同类项得:2x≤4,

把x的系数化为1得:x≤2,

故选:B.此题主要考查了一元一次不等式的解法,解不等式时要注意:①移项时要注意符号的改变;②把未知数的系数化为1时,两边同时除以或乘以同一个负数时要改变不等号的方向.8、D【解析】

根据题意得到改造后花坛的长为(5+x)米,宽为(5-x)米,则其面积为(5+x)(5-x)=(25-x2)平方米,然后根据正方形的面积为52=25平方米可得到改造后花坛的面积减少了x2平方米.【详解】解:根据题意改造后花坛为矩形,其长为(5+x)米,宽为(5-x)米,所以矩形花坛的面积为(5+x)(5-x)=(25-x2)平方米,而原正方形面积为52=25平方米,所以改造后花坛的面积减少了x2平方米.

故选:D本题考查了平方差公式的几何背景:利用几何面积验证平方差公式,根据题意画出图形,数形结合思想解题是本题的解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、(x﹣3)2+64=x2【解析】

设绳索长为x尺,根据勾股定理列出方程解答即可【详解】解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,故答案为:(x﹣3)2+64=x2本题考查了勾股定理在实际生活中的应用,找出等量关系,正确列出一元二次方程是解题的关键.10、AC=BD答案不唯一【解析】

由四边形ABCD的对角线互相垂直平分,可得四边形ABCD是菱形,再添加∠DAB=90°,即可得出四边形ABCD是正方形.【详解】解:可添加AC=BD,

理由如下:

∵四边形ABCD的对角线互相平分,

∴四边形ABCD是平行四边形,

∵AC⊥BD,∴平行四边形ABCD是菱形,

∵∠DAB=90°,

∴四边形ABCD是正方形.

故答案为:AC=BD(答案不唯一).本题是考查正方形的判定,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.11、3【解析】原式=1312、3.5【解析】

将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.【详解】根据中位数的概念,可知这组数据的中位数为.本题考查中位数的概念.13、5.【解析】

将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.【详解】解:将这组数据按从小到大的顺序排列是:1,4,4,6,7,10,位于最中是的两个数是4和6,因此中位数为(4+6)÷2=5.故答案为5.本题考查了中位数的含义及计算方法.三、解答题(本大题共5个小题,共48分)14、(1)①详见解析;②DG+DF=DP;(2)不成立,数量关系式应为:DG-DF=DP【解析】

(1)①根据矩形性质证△HPG≌△DPF(ASA),得PG=PF;②由①知,△HPD为等腰直角三角形,△HPG≌△DPF,根据直角三角形性质可得HD=DP;(2)过点P作PH⊥PD交射线DA于点H,得到△HPD为等腰直角三角形,证△HPG≌△DPF,得HG=DF,DH=DG-HG=DG-DF,DG-DF=DP.【详解】(1)①∵由矩形性质得∠GPF=∠HPD=90°,∠ADC=90°,

∴∠GPH=∠FPD,

∵DE平分∠ADC,

∴∠PDF=∠ADP=45°,

∴△HPD为等腰直角三角形,

∴∠DHP=∠PDF=45°,

在△HPG和△DPF中,

∵,

∴△HPG≌△DPF(ASA),

∴PG=PF;

②结论:DG+DF=DP,

由①知,△HPD为等腰直角三角形,△HPG≌△DPF,

∴HD=DP,HG=DF,

∴HD=HG+DG=DF+DG,

∴DG+DF=DP;

(2)不成立,数量关系式应为:DG-DF=DP,

如图,过点P作PH⊥PD交射线DA于点H,

∵PF⊥PG,

∴∠GPF=∠HPD=90°,

∴∠GPH=∠FPD,

∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,

∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,

∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,

∴∠GHP=∠FDP=180°-45°=135°,

在△HPG和△DPF中,

∴△HPG≌△DPF,

∴HG=DF,

∴DH=DG-HG=DG-DF,

∴DG-DF=DP.考核知识点:矩形性质的运用,等腰直角三角形.综合运用全等三角形判定和等腰直角三角形性质是关键.15、(1)1;(2)-12+4.【解析】

(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=(4-2)÷2=2÷2=1;(2)原式=5-3-(12-4+2)=2-14+4=-12+4.本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.16、(1)画图见解析;(2)证明见解析【解析】试题分析(1)利用勾股定理即可作出边长为2,25,4的一个格点△ABC;(2)根据勾股定理得逆定理即可证明试题解析:(1)如图所示:(2)由图可知,AB=4,BC=2,AC=25∵AB2+BC2=20,AC2=20,∴AB2+BC2=AC2,∴△ABC是直角三角形.17、已知:①③(或①④或②④或③④),证明见解析.【解析】试题分析:根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.其中解法一是证明两组对角相等的四边形是平行四边形;解法二是证明两组对边平行的四边形是平行四边形;解法三是证明一组对边平行且相等的四边形是平行四边形;解法四是证明两组对角相等的四边形是平行四边形.试题解析:已知:①③,①④,②④,③④均可,其余均不可以.解法一:已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.解法二:已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AD∥BC,∴四边形ABCD是平行四边形;解法三:已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AB=CD,∴四边形ABCD是平行四边形;解法四:已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,∴∠A+∠D=180°,又∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形.考点:平行四边形的判定.18、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解析】

(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y与x之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:方案A品牌(块)B品牌(块)①4852②4951③5050(3)∵140>0,∴y随x的增大而增大.∴x=50时y取得最大值.又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

先提取公因式x后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.【详解】x3-3x=x(x2-3),=.本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.20、1.【解析】

由图示知:MN=AM+BN﹣AB,所以结合已知条件,根据勾股定理求出AC的长即可解答.【详解】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=1.故答案是:1.本题考查勾股定理,解题的关键是结合图形得出:MN=AM+BN﹣AB.21、x=-1【解析】

由2x1+54=0,得x1=-27,解出x值即可.【详解】由2x1+54=0,得x1=-27,∴x=-1,故答案为:x=-1.本题考查了立方根,正确理解立方根的意义是解题的关键.22、1.【解析】

由数轴可知,1<a<2,从而得到a-1>0.a-2<0.再根据绝对值的性质:和二次根式的性质:化简即可.【详解】解:∵1<a<2,∴a-1>0.a-2<0.∴a-1+2-a=1故答案为:1.本题考查了绝对值和二次根式的性质,掌握它们的性质是解题的关键.23、1【解析】

EF是△ABC的中位线,可得DE∥BC,又BD平分∠ABC交EF于D,则可证得等角,进一步可证得△BDE为等腰三角形,从而求出EB.【详解】解:∵EF是△ABC的中位线

∴EF∥BC,∠EDB=∠DBC

又∵BD平分∠ABC

∴∠EBD=∠DBC=∠EDB

∴EB=ED=1.

故答案为1.本题考查的是三角形中位线的性质和等腰三角形的性质,比较简单.二、解答题(本大题共3个小题,共30分)24、(1)20%;(2)①1;②该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.【解析】

(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,根据“2015年的床位数=2013年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)①、设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论