版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【压轴必刷】中考数学压轴大题之经典模型培优案专题6截长补短模型解题策略解题策略模型:截长补短如图①,若证明线段AB、CD、EF之间存在EF=AB+CD,可以考虑截长补短法.截长法:如图②,在EF上截取EG=AB,再证明GF=CD即可.补短法:如图③,延长AB至H点,使BH=CD,再证明AH=EF即可.模型分析截长补短的方法适用于求证线段的和差倍分关系.截长,指在长线端中截取一段等于已知的线段;补短,指将一条短线端延长,延长部分等于已知线段.该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程.常见模型示例:如图,已知在△ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.经典例题经典例题【例1】(2022·江苏徐州·模拟预测)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,线段EF、BE、FD之间的关系是(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD【例2】(2022·安徽合肥·一模)已知:如图1,△ABC中,∠CAB=120°,AC=AB,点D是BC上一点,其中∠ADC=α(30°<α<90°),将△ABD沿AD所在的直线折叠得到△AED,AE交CB于F,连接CE(1)求∠CDE与∠AEC的度数(用含α的代数式表示);(2)如图2,当α=45°时,解决以下问题:①已知AD=2,求CE的值;②证明:DC-DE=2AD;【例3】(2022·江苏·八年级专题练习)在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?答:.(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.
【例4】(2022·江苏·八年级课时练习)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.培优训练培优训练一、解答题1.(2022·福建三明·九年级期末)在菱形ABCD中,∠BAD=60°,点E,F分别在边AB,AD上,且AE=DF,BF与DE交于点(1)如图①,连接BD.求证:△ADE≌△DBF;(2)如图②,连接CG.求证:BG+DG=CG.2.(2022·全国·八年级专题练习)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠EAF=1(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.(2021·重庆市实验学校八年级期中)如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)若∠C=60°,AB=2,求EC的长;(2)求证:AB=DG+FC.4.(2022·全国·八年级课时练习)(1)阅读理解:问题:如图1,在四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°.求证:DA=DC.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC上截取BM=BA,连接DM,得到全等三角形,进而解决问题;方法2:延长BA到点N,使得BN=BC,连接DN,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接AC,当∠DAC=60°时,探究线段AB,BC,BD之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD中,∠A+∠C=180°,DA=DC,过点D作DE⊥BC,垂足为点E,请直接写出线段AB、CE、BC之间的数量关系.5.(2022·全国·八年级课时练习)阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.6.(2021·北京·清华附中九年级阶段练习)已知∠MON=α0°<α<180°,A为射线ON上一定点,B为射线OM上动点(不与点O重合)连接AB,取AB的中点C,连接OC.在射线BM上取一点D,使得BD=OA(1)若α=60°,①如图1,当∠BAO=60°时,在图1中补全图形,并写出OCAD②如图2,当∠BAO<60°时,猜想OCAD(2)如图3,若α=90°,OC⊥AD,直接写出OCAD7.(2022·全国·八年级课时练习)如图,△ABC为等边三角形,直线l过点C,在l上位于C点右侧的点D满足∠BDC=60°(1)如图1,在l上位于C点左侧取一点E,使∠AEC=60°,求证:△AEC≌△CDB;(2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH=120°,且AF=HF,∠HGF=120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为.8.(2022·全国·八年级课时练习)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+1(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.9.(2022·江苏·八年级课时练习)在△ABC中,AD为△ABC的角平分线,点E是直线BC上的动点.(1)如图1,当点E在CB的延长线上时,连接AE,若∠E=48°,AE=AD=DC,则∠ABC的度数为.(2)如图2,AC>AB,点P在线段AD延长线上,比较AC+BP与AB+CP之间的大小关系,并证明.(3)连接AE,若∠DAE=90°,∠BAC=24°,且满足AB+AC=EC,请求出∠ACB的度数(要求:画图,写思路,求出度数).10.(2022·全国·八年级课时练习)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,交BC于点D,过D作DE⊥BA于点E,点F在AC上,且BD=DF.(1)求证:AC=AE;(2)若AB=7.4,AF=1.4,求线段BE的长.11.(2021·重庆一中八年级阶段练习)如图,在△ABC中,∠A=45°.(1)如图1,若AC=62,BC=213,求(2)如图2,D为△ABC外的一点,连接CD,BD且CD=CB,∠ABD=∠BCD.过点C作CE⊥AC交AB的延长线于点E.求证:BD+2AB=2(3)如图3,在(2)的条件下,作AP平分∠CAE交CE于点P,过E点作EM⊥AP交AP的延长线于点M.点K为直线AC上的一个动点,连接MK,过M点作MK'⊥MK,且始终满足MK'=MK,连接AK'.若AC=4,请直接写出AK'+MK'取得最小值时AK'+MK'212.(2022·全国·八年级专题练习)在△ABC中,AE,CD为△ABC的角平分线,AE,CD交于点F.(1)如图1,若∠B=60°.①直接写出∠AFC的大小;②求证:AC=AD+CE.(2)若图2,若∠B=90°,求证:S△ACF13.(2022·全国·八年级课时练习)等边ΔABC中,点H、K分别在边BC、AC上,且AK=CH,连接AH、BK交于点F.(1)如图1,求∠AFB的度数;图1(2)连接CF,若∠BFC=90°,求BFAF(3)如图2,若点G为AC边的中点,连接FG,且AF=2FG,则∠BFG的大小是___________.图214.(2021·山东德州·八年级期末)数学课上,李老师提出问题:如图1,在正方形ABCD中,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.经过思考,小聪展示了一种正确的解题思路.取AB的中点H,连接HE,则△BHE为等腰直角三角形,这时只需证△AHE与△ECF全等即可.在此基础上,同学们进行了进一步的探究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(不含点B,C)的任意一点”,其他条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程,如果不正确,请说明理由;(2)小华提出:如图3,如果点E是边BC延长线上的任意一点,其他条件不变,那么结论“AE=EF”是否成立?(填“是”或“否”);(3)小丽提出:如图4,在平面直角坐标系xOy中,点O与点B重合,正方形的边长为1,当E为BC边上(不含点B,C)的某一点时,点F恰好落在直线y=﹣2x+3上,请直接写出此时点E的坐标.15.(2021·四川成都·九年级期末)如图1,在Rt△ABC中,∠ACB=90°,AC=BC,将点C绕点B顺时针旋转105°得到点D,连接BD,过点D作DE⊥BC交CB延长线于点E,点F为线段DE上的一点,且∠DBF=45°,作∠BFD的角平分线FG交AB于点G.(1)求∠BFD的度数;(2)求BF,DF,GF三条线段之间的等量关系式;(3)如图2,设H是直线DE上的一个动点,连接HG,HC,若AB=2,求线段HG+HC的最小值(结果保留根号).16.(2021·广东深圳·八年级期末)在平行四边形ABCD中,AB⊥CD于E,CF⊥AD于F,H为AD上一动点,连接CH,CH交AE于G,且AE=CD=4.(1)如图1,若∠B=60°,求CF、AF的长;(2)如图2,当FH=FD时,求证:CG=ED+AG;(3)如图3,若∠B=60°,点H是直线AD上任一点,将线段CH绕C点逆时针旋转60°,得到线段CH′,请直接写出17.(2022·江苏·八年级课时练习)如图1,在等边三角形ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE相交于点O.(1)求证:OA=2DO;(2)如图2,若点G是线段AD上一点,CG平分∠BCE,∠BGF=60°,GF交CE所在直线于点F.求证:GB=GF.(3)如图3,若点G是线段OA上一点(不与点O重合),连接BG,在BG下方作∠BGF=60°,边GF交CE所在直线于点F.猜想:OG,OF、OA三条线段之间的数量关系,并证明.18.(2021·山东济南·七年级期末)本学期,我们学习了三角形相关知识,而四边形的学习,我们一般通过辅助线把四边形转化为三角形,通过三角形的基本性质和全等来解决一些问题.(1)如图1,在四边形ABCD中,AB=AD,∠B+∠D=180°,连接AC.①小明发现,此时AC平分∠BCD.他通过观察、实验,提出以下想法:延长CB到点E,使得BE=CD,连接AE,证明△ABE≌△ADC,从而利用全等和等腰三角形的性质可以证明AC平分∠BCD.请你参考小明的想法,写出完整的证明过程.②如图2,当∠BAD=90°时,请你判断线段AC,BC,CD之间的数量关系,并证明.(2)如图3,等腰△CDE、等腰△ABD的顶点分别为A、C,点B在线段CE上,且∠ABC+∠ADC=180°,请你判断∠DAE与∠DBE的数量关系,并证明.19.(2021·广东茂名·九年级阶段练习)在▱ABCD中,直线MN经过点A,BE⊥MN于E,CF⊥MN于F,DG⊥MN于G.请解答下列问题:(1)如图①,求证:BE+CF=DG;(提示:过点C作CH⊥DG于H)(2)如图②、图③,线段BE,CF,DG之间又有怎样的数量关系?请写出你的猜想,不需要证明;(3)在(1)(2)的条件下,若CD=10,AE=6,CF=1,则DG=______.20.(2021·四川成都·二模)如图,点C在以AB为直径的⊙O上,BD平分∠ABC交⊙O于点D,过D作BC的垂线,垂足为E.(1)求证:DE与⊙O相切;(2)若AB=6,tanA=2,求BE的长;(3)线段AB,BE,CE之间有何数量关系?写出你的结论并证明.21.(2021·重庆八中一模)如图1,在四边形ABCD中,AC交BD于点E,△ADE为等边三角形.(1)若点E为BD的中点,AD=4,CD=5,求△BCE的面积;(2)如图2,若BC=CD,点F为CD的中点,求证:AB=2AF;(3)如图3,若AB∥CD,∠BAD=90°,点P为四边形ABCD内一点,且∠APD=90°,连接BP,取BP的中点Q,连接CQ.当AB=62,AD=42,tan∠ABC=2时,求CQ+1010BQ22.(2022·全国·八年级专题练习)如图,在△ABC中,AC=BC,AD平分∠CAB.(1)如图1,若ACB=90°,求证:AB=AC+CD;(2)如图2,若AB=AC+BD,求∠ACB的度数;(3)如图3,若∠ACB=100°,求证:AB=AD+CD.23.(2022·江苏·八年级课时练习)(1)问题背景:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防腐木栅栏装修合同范本
- 《A-U模型视角下YWN公司竞争优势提升对策研究》
- 《B市邮政公司金融中心绩效考核体系优化研究》
- 《基于统计形状模型的心脏影像非刚性配准算法研究》
- 潮州复印机租赁合同范本
- 台面安装合同范本
- 精准医疗与医保信息管理制度
- 足球场地建设与维护方案
- 旅游行业复苏疫情防控工作方案
- 成人教育教师研修总结
- 2024年新人教版一年级上册数学课件 第四单元11~20的认识 第4课时简单加、减法
- 中频炉事故专项应急预案
- 解读2024网络数据安全管理条例课件模板
- 《托育服务政策法规与职业伦理》全套教学课件
- 期末模拟练习(试题)(含答案)2024-2025学年二年级上册数学苏教版
- 教学计划(教学计划)-2024-2025学年大象版三年级科学上册
- 2024年房产中介佣金提成协议书范本
- 某港口码头工程施工组织设计
- 职业技术学校老年保健与管理专业(三年制)人才培养方案
- 中建项目科技创效案例手册(2022版)
- 2024年秋季人教版新教材七年级上册语文全册教案(名师教学设计简案)
评论
0/150
提交评论