题型06最值问题之瓜豆原理(原卷版+解析)_第1页
题型06最值问题之瓜豆原理(原卷版+解析)_第2页
题型06最值问题之瓜豆原理(原卷版+解析)_第3页
题型06最值问题之瓜豆原理(原卷版+解析)_第4页
题型06最值问题之瓜豆原理(原卷版+解析)_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

06最值问题之瓜豆原理知识解读瓜豆原理是主从动点联动问题,也叫旋转相似,这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题.瓜豆原理:一个主动点,一个从动点(根据某种约束条件,跟着主动点动),当主动点运动时,从动点的轨迹相同.(古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.)满足条件:1.两动一定;2.动点与定点的连线夹角是定角;3.动点到定点的距离比值是定值.方法:第一步:找主动点的轨迹;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹;第五步:根据轨迹确定点线、点圆最值.“瓜豆原理”其实质就是构造旋转、相似.涉及的知识和方法:知识:①相似;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;④点到圆上点共线有最值.模型一:运动轨迹为圆弧引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量;主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.模型二:运动轨迹为线段引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠PAQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段.【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:P、Q两点轨迹所在直线的夹角等于∠PAQ(当∠PAQ≤90°时,∠PAQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)针对训练一、单选题1.如图,A是上任意一点,点C在外,已知是等边三角形,则的面积的最大值为(

)A. B.4 C. D.62.如图,在矩形纸片ABCD中,,,点E是AB的中点,点F是AD边上的一个动点,将沿EF所在直线翻折,得到,则的长的最小值是A. B.3 C. D.3.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,BC=2,△ADC与△ABC关于AC对称,点E、F分别是边DC、BC上的任意一点,且DE=CF,BE、DF相交于点P,则CP的最小值为(

)A.1 B. C. D.24.如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C.1 D.25.如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点,连接,则的最小值为()A. B. C. D.二、填空题6.如图,等边三角形ABC中,AB=4,高线AH=2,D是线段AH上一动点,以BD为边向下作等边三角形BDE,当点D从点A运动到点H的过程中,点E所经过的路径为线段CM,则线段CM的长为_______,当点D运动到点H,此时线段BE的长为__________.7.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为________.8.如图,正方形的边长为4,为上一点,且,为边上的一个动点,连接,以为边向右侧作等边,连接,则的最小值为_______.9.如图,在Rt△ABC中,,,BC=2,线段BC绕点B旋转到BD,连AD,E为AD的中点,连接CE,则CE的最大值是________.10.如图,在矩形ABCD中,对角线AC,BD相交于点O,,,点F沿线段AO从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,连接OE.现给出以下结论:①;②;③直线;④点E运动的路程是.其中正确的结论是______.(写出所有正确结论的序号)11.如图,已知,平面内点P到点O的距离为2,连接AP,若且,连接AB,BC,则线段BC的最小值为__________.12.如图,线段为的直径,点在的延长线上,,,点是上一动点,连接,以为斜边在的上方作Rt,且使,连接,则长的最大值为__________.三、解答题13.如图,过抛物线上一点A作轴的平行线,交抛物线于另一点B,交轴于点C,已知点A的横坐标为.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连接BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在轴上方时,求直线PD的函数表达式.14.如图①,在中,,,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①;②连接CE,直线CE与直线AB的位置关系是.(2)请在图③中画出,使点E在直线AD的右侧,连接CE,试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.15.如图,等边三角形ABC的边长为4,点D是直线AB上一点.将线段CD绕点D顺时针旋转60°得到线段DE,连结BE.(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长.

16.如图所示,在中,,点是上一点,以为一边向右下方作等边,当由点运动到点时,求点运动的路径长.17.在平面直角坐标系中,A(a,0)、B(b,0),且a,b满足,C、D两点分别是y轴正半轴、x轴负半轴上的两个动点;(1)如图1,若C(0,4),求△ABC的面积;(2)如图1,若C(0,4),BC=5,BD=AE,且∠CBA=∠CDE,求D点的坐标;(3)如图2,若∠CBA=60°,以CD为边,在CD的右侧作等边△CDE,连接OE,当OE最短时,求A,E两点之间的距离.18.如图,在矩形ABCD中,AB=3,AD=4,连接BD,将△ABD绕点D顺时针旋转,记旋转后的三角形为△A′B′D,旋转角为α(0°<α<360°且α≠180°).(1)在旋转过程中,当A′落在线段BC上时,求A′B的长;(2)连接A′A、A′B,当∠BA′B'=90°时,求tan∠A′AD;(3)在旋转过程中,若△DAA′的重心为G,则CG的最小值=___________.19.如图所示,在矩形中,,,为的中点,为上一动点,为的中点,连接,求的最小值.20.如图所示,在扇形中,,,点是上的动点,以为边作正方形,当点从点移动至点时,求点经过的路径长.21.如图1,在中,,,,以点为圆心,为半径作圆.点为上的动点,连接,作,使点落在直线的上方,且满足,连接,.(1)求的度数,并证明;(2)如图2,若点在上时,连接,求的长;(3)点在运动过程中,是否有最大值或最小值?若有,请求出当取得最大值或最小值时,的度数;若没有,请说明理由.22.如图所示,为等腰直角三角形,,直角顶点在第二象限,点在轴上移动,以为斜边向上作等腰直角,我们发现直角顶点点随着点的移动也在一条直线上移动,求这条直线的函数解析式.23.如图所示,点,的半径为2,,,点是上的动点,点是的中点,求的最小值.24.如图所示,在等腰中,,点在以斜边为直径的半圆上,为的中点,当点沿半圆从点运动至点时,求点运动的路径长.25.如图1,已知在平面直角坐标系中,四边形是矩形点分别在轴和轴的正半轴上,连结,,,是的中点.(1)求OC的长和点的坐标;(2)如图2,是线段上的点,,点是线段上的一个动点,经过三点的抛物线交轴的正半轴于点,连结交于点①将沿所在的直线翻折,若点恰好落在上,求此时的长和点的坐标;②以线段为边,在所在直线的右上方作等边,当动点从点运动到点时,点也随之运动,请直接写出点运动路径的长.26.在等边三角形中,点D为上一点,连接,将绕D逆时针旋转角度得到,连接,已知,;(1)如图1,若,,连接,求的长;(2)如图2,若,分别取的中点H,的中点F,连接,,求证:;(3)如图3,若,P为上一点,且满足,连接,将沿着所在直线翻折得到,连接,当最大时,直接写出的面积.27.在菱形中,,是对角线上的一点,连接.(1)当在的中垂线上时,把射线绕点顺时针旋转后交于,连接.如图①,若,求的长.(2)在(1)的条件下,连接,把绕点顺时针旋转得到如图②,连接,点为的中点,连接,求的最大值.28.在中,D为直线上一动点,连接,将绕点B逆时针旋转,得到,连接与相交于点F.(1)如图1,若D为的中点,,,,连接,求线段的长;(2)如图2,G是线段延长线上一点,D在线段上,连接,,若,,,,证明;(3)如图3,若为等边三角形,,点M为线段上一点,且,点P是直线上的动点,连接,,,请直接写出当最小时的面积.06最值问题之瓜豆原理知识解读瓜豆原理是主从动点联动问题,也叫旋转相似,这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题.瓜豆原理:一个主动点,一个从动点(根据某种约束条件,跟着主动点动),当主动点运动时,从动点的轨迹相同.(古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.)满足条件:1.两动一定;2.动点与定点的连线夹角是定角;3.动点到定点的距离比值是定值.方法:第一步:找主动点的轨迹;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹;第五步:根据轨迹确定点线、点圆最值.“瓜豆原理”其实质就是构造旋转、相似.涉及的知识和方法:知识:①相似;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;④点到圆上点共线有最值.模型一:运动轨迹为圆弧引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量;主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.模型二:运动轨迹为线段引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠PAQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段.【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:P、Q两点轨迹所在直线的夹角等于∠PAQ(当∠PAQ≤90°时,∠PAQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)针对训练一、单选题1.如图,A是上任意一点,点C在外,已知是等边三角形,则的面积的最大值为(

)A. B.4 C. D.6【答案】A【详解】解:如图,以为边向上作等边三角形,连接,∵,∴,即,在和中,,∴,∴,∴点D的运动轨迹是以点M为圆心,长为半径的圆,要使的面积最大,则求出点D到线段的最大距离,∵是边长为4的等边三角形,∴点M到的距离为,∴点D到的最大距离为,∴的面积最大值是,故选A.2.如图,在矩形纸片ABCD中,,,点E是AB的中点,点F是AD边上的一个动点,将沿EF所在直线翻折,得到,则的长的最小值是A. B.3 C. D.【答案】D【详解】以点E为圆心,AE长度为半径作圆,连接CE,当点在线段CE上时,的长取最小值,如图所示,根据折叠可知:.在中,,,,,的最小值.故选D.3.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,BC=2,△ADC与△ABC关于AC对称,点E、F分别是边DC、BC上的任意一点,且DE=CF,BE、DF相交于点P,则CP的最小值为(

)A.1 B. C. D.2【答案】D【详解】解:连接AD,因为∠ACB=30°,所以∠BCD=60°,因为CB=CD,所以△CBD是等边三角形,所以BD=DC因为DE=CF,∠EDB=∠FCD=60°,所以△EDB≌△FCD,所以∠EBD=∠FDC,因为∠FDC+∠BDF=60°,所以∠EBD+∠BDF=60°,所以∠BPD=120°,所以点P在以A为圆心,AD为半径的弧BD上,直角△ABC中,∠ACB=30°,BC=2,所以AB=2,AC=4,所以AP=2当点A,P,C在一条直线上时,CP有最小值,CP的最小值是AC-AP=4-2=2故选D.4.如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C.1 D.2【答案】C【详解】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC==1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1,故选C.5.如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点,连接,则的最小值为()A. B. C. D.【答案】B【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(,),则PM=,QM=,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N,在△PQM和△Q′PN中,,∴△PQM≌△Q′PN(AAS),∴PN=QM=,Q′N=PM=,∴ON=1+PN=,∴Q′(,),∴OQ′2=()2+()2=m2﹣5m+10=(m﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′的最小值为,故选:B.二、填空题6.如图,等边三角形ABC中,AB=4,高线AH=2,D是线段AH上一动点,以BD为边向下作等边三角形BDE,当点D从点A运动到点H的过程中,点E所经过的路径为线段CM,则线段CM的长为_______,当点D运动到点H,此时线段BE的长为__________.【答案】

【详解】解:如图,连接EC.∵△ABC,△BDE都是等边三角形,∴BA=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=EC,∵点D从点A运动到点H,∴点E的运动路径的长为,当重合,而(即)为等边三角形,故答案为:.7.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为________.【答案】.【详解】解:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′==,故答案为.8.如图,正方形的边长为4,为上一点,且,为边上的一个动点,连接,以为边向右侧作等边,连接,则的最小值为_______.【答案】【详解】由题意可知,点是主动点,点是从动点,点在线段上运动,点也一定在直线轨迹上运动将绕点旋转,使与重合,得到,从而可知为等边三角形,点在垂直于的直线上,作,则即为的最小值,作,可知四边形为矩形,则.故答案为.9.如图,在Rt△ABC中,,,BC=2,线段BC绕点B旋转到BD,连AD,E为AD的中点,连接CE,则CE的最大值是________.【答案】3【详解】解:∵BC=2,线段BC绕点B旋转到BD,∴BD=2,∴.由题意可知,D在以B为圆心,BD长为半径的圆上运动,∵E为AD的中点,∴E在以BA中点为圆心,长为半径的圆上运动,CE的最大值即C到BA中点的距离加上长.∵,,BC=2,∴C到BA中点的距离即,又∵,∴CE的最大值即.故答案为3.10.如图,在矩形ABCD中,对角线AC,BD相交于点O,,,点F沿线段AO从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,连接OE.现给出以下结论:①;②;③直线;④点E运动的路程是.其中正确的结论是______.(写出所有正确结论的序号)【答案】①②③【详解】解:①∵∠DAC=60°,OD=OA,∴△OAD为等边三角形,∴∠DOA=∠DAO=∠ODA=60°,AD=OD,∵△DFE为等边三角形,∴∠EDF=∠EFD=∠DEF=60°,DF=DE,∵∠BDE+∠FDO=∠ADF+∠FDO=60°,∴∠BDE=∠ADF,∵∠ADF+∠AFD+∠DAF=180°,∴∠ADF+∠AFD=180°﹣∠DAF=120°,∵∠EFC+∠AFD+∠DFE=180°,∴∠EFC+∠AFD=180°﹣∠DFE=120°,∴∠ADF=∠EFC,∴∠BDE=∠EFC,故结论①正确;②如图,连接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故结论②正确;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故结论③正确;④如图,延长OE至,使=OD,连接,∵△DAF≌△DOE,∠DOE=60°,∴点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,∵=OD=AD=AB•tan∠ABD=4•tan30°=,∴点E运动的路程是,故结论④错误.故答案为①②③.11.如图,已知,平面内点P到点O的距离为2,连接AP,若且,连接AB,BC,则线段BC的最小值为__________.【答案】【详解】解:如图所示,延长PB到D使得PB=DB,∵,∴,又∵∠APB=60°,∴△APD是等边三角形,∵B为PD的中点,∴AB⊥DP,即∠ABP=90°,∴∠BAP=30°,以AO为斜边在AC下方作Rt△AMO,使得∠MAO=30°,连接CM,过点M作MH⊥AC于H,∴,同理可得,∵∠OAM=30°=∠PAB,∴∠BAM=∠PAO,又∵,∴△AMB∽△AOP,∴,∵点P到点O的距离为2,即OP=2,∴,∴点B在以M为圆心,以为半径的圆上,连接CM交圆M(半径为)于,∴当M、B、C三点共线时,即点B在点的位置时,BC有最小值,∵AC=2AO=8,∴AO=4,∴,∴,,∴,∴,∴,∴BC的最小值为,故答案为:.12.如图,线段为的直径,点在的延长线上,,,点是上一动点,连接,以为斜边在的上方作Rt,且使,连接,则长的最大值为__________.【答案】【详解】解:如图,作,使得,,则,,,,,,,,,即(定长),点是定点,是定长,点在半径为1的上,,的最大值为,故答案为:.三、解答题13.如图,过抛物线上一点A作轴的平行线,交抛物线于另一点B,交轴于点C,已知点A的横坐标为.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连接BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在轴上方时,求直线PD的函数表达式.【答案】(1)对称轴为直线x=4;B(10,5).(2)①.②.【详解】解:(1)把x=-2代入,得,∴A(﹣2,5),对称轴为直线x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE==3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,,∴x=,∴P(,5),设直线PD的解析式为y=kx+b,由题意得,∴,∴直线PD的解析式为.14.如图①,在中,,,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①;②连接CE,直线CE与直线AB的位置关系是.(2)请在图③中画出,使点E在直线AD的右侧,连接CE,试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.【答案】(1)①50;②;(2);(3)AE的最小值.【详解】(1)①如图②中,∵,,∴,②结论:.理由:∵,,∴,∴,∴,∵AE垂直平分线段BC,∴,∴,∵,,∴,∴,∴.故答案为50,.(2)如图③中,以P为圆心,PB为半径作⊙P.∵AD垂直平分线段BC,∴,∴,∵,∴.(3)如图④中,作于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值.15.如图,等边三角形ABC的边长为4,点D是直线AB上一点.将线段CD绕点D顺时针旋转60°得到线段DE,连结BE.(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长.

【答案】(1)见解析;(2)【详解】解:(1)补全图形如图1所示,AD=BE,理由如下:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE.(2)如图2,过点A作AF⊥EB交EB延长线于点F.∵△ACD≌△BCE,∴∠CBE=∠A=60°,∴点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,∵∠ACB=∠CBE=60°,∴AC∥EF,∵AF⊥BE,∴AF⊥AC,在Rt△ACF中,∴CF===,∴CD=CF=.16.如图所示,在中,,点是上一点,以为一边向右下方作等边,当由点运动到点时,求点运动的路径长.【答案】点运动的路径长为.【详解】点为定点,可以看作是绕点顺时针旋转60°而来,点运动的路径长等于点运动的路径长,即为的长,,,.点运动的路径长为.17.在平面直角坐标系中,A(a,0)、B(b,0),且a,b满足,C、D两点分别是y轴正半轴、x轴负半轴上的两个动点;(1)如图1,若C(0,4),求△ABC的面积;(2)如图1,若C(0,4),BC=5,BD=AE,且∠CBA=∠CDE,求D点的坐标;(3)如图2,若∠CBA=60°,以CD为边,在CD的右侧作等边△CDE,连接OE,当OE最短时,求A,E两点之间的距离.【答案】(1)△ABC的面积为12;(2)D点的坐标为(-2,0);(3)A,E两点之间的距离为【详解】解:(1)∵,∴,由非负性可知,,解得:,∴,,,∵,∴,∴;(2)由(1)知,,∴,∵,∴,在和中,∴,∴,∵,,∴,在和中,∴,∴,∵,,∴,,∴,∴,∵,∴;(3)由(2)可知CB=CA,∵∠CBA=60°,∴△ABC为等边三角形,∠BCA=60°,∠DBC=120°,∵△CDE为等边三角形,∴CD=CE,∠DCE=60°,∵∠DCE=∠DCB+∠BCE,∠BCA=∠BCE+∠ECA,∴∠DCB=∠ECA,在△DCB和△ECA中,∴,∴,∵,∴,即:随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,∵要使得OE最短,∴如图所示,当OE⊥PQ时,满足OE最短,此时∠OEA=90°,∵,,∴,,∵,∴,∴,∴当OE最短时,A,E两点之间的距离为.18.如图,在矩形ABCD中,AB=3,AD=4,连接BD,将△ABD绕点D顺时针旋转,记旋转后的三角形为△A′B′D,旋转角为α(0°<α<360°且α≠180°).(1)在旋转过程中,当A′落在线段BC上时,求A′B的长;(2)连接A′A、A′B,当∠BA′B'=90°时,求tan∠A′AD;(3)在旋转过程中,若△DAA′的重心为G,则CG的最小值=___________.【答案】(1)4;(2)tan∠A′AD=3或;(3)【详解】(1)解:(1)如图1,∵四边形ABCD矩形,AB=3,AD=4,∴CD=AB=3,BC=AD=4,∠C=90°,当A′落在线段BC上时,由旋转得A′D=AD=4,∴A′C,∴A′B=BC﹣A′C=4,∴A′B的长为4.(2)(2)如图2,点B′与点C在直线BD的同侧,作A′E⊥AD于点E,则∠A′EA=90°,由旋转得∠B′A′D=∠BAD=90°,A′D=AD=4,∵∠BA′B'=90°,∴∠B′A′D+∠BA′B'=180°,∴点B、A′、D在同一条直线上,∵∠A′ED=∠BAD=90°,∴BD5,∴sin∠ADB,cos∠ADB,∴A′EA′D4,EDA′D4,∴AE=AD﹣ED=4,∴tan∠A′AD3;如图3,点B′与点C在直线BD的异侧,作A′E⊥AD交AD的延长线于点E,则∠E=90°,由旋转得∠B′A′D=∠BAD=90°,A′D=AD=4,∵∠BA′B'=90°,∴∠B′A′D=∠BA′B',∴A′D与A′B重合,∴点B、A′、D在同一条直线上,∵∠EDA′=∠ADB,∴sin∠EDA′=sin∠ADB,cos∠EDA′=cos∠ADB,∴A′EA′D,EDA′D,∴AE=AD+ED=4,

∴tan∠A′AD,综上所述,tan∠A′AD=3或.(3)(3)如图4,在AD上截取DF,则,作DH⊥AA′于点H,在DH上截取DGDH,连接FG、CG,则,∵A′D=AD,∴H为AA′的中点,∴DH为△DAA′的中线,∴点G为△DAA′的重心,∵,∠FDG=∠ADH,∴△DFG∽△DAH,∴∠FGD=∠AHD=90°,取DF的中点O,连接OC交⊙O于点P,连接OG,则OG=OP=ODDF,∴点G在以点O为圆心、半径为的圆上运动,∵CG+OG≥OC,即CG+OG≥CP+OP,∴CGCP,∴CG≥CP,∴当CG=CP时,CG的长最小,

∵OC,∴CP=OC﹣OP,∴CG的最小值是,故答案为:.19.如图所示,在矩形中,,,为的中点,为上一动点,为的中点,连接,求的最小值.【答案】的最小值为.【详解】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE.当点F在EC上除点C、E的位置处时,有DP=FP.由中位线定理可知:P1P∥CE且P1P=CF.∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2.∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角BCP1中,CP1=BC=2,∴BP1=∴PB的最小值是.故答案是:.20.如图所示,在扇形中,,,点是上的动点,以为边作正方形,当点从点移动至点时,求点经过的路径长.【答案】点经过的路径长为.【详解】解:如图,由此BO交⊙O于F,取的中点H,连接FH、HB、BD.易知△FHB是等腰直角三角形,HF=HB,∠FHB=90°,∵∠FDB=45°=∠FHB,∴点D在⊙H上运动,轨迹是(图中红线),易知∠HFG=∠HGF=15°,∴∠FHG=150°,∴∠GHB=120°,易知HB=3,∴点D的运动轨迹的长为=2π.21.如图1,在中,,,,以点为圆心,为半径作圆.点为上的动点,连接,作,使点落在直线的上方,且满足,连接,.(1)求的度数,并证明;(2)如图2,若点在上时,连接,求的长;(3)点在运动过程中,是否有最大值或最小值?若有,请求出当取得最大值或最小值时,的度数;若没有,请说明理由.【答案】(1)见解析;(2);(3)有.①当取得最大值时,;②当取得最小值时,.【详解】(1)在中,,,,,,,,,,,;(2)由(1)知,,,,,,,,,,在中,,,由勾股定理得;(3)有.由(1)知,,,,是定值,点是在以点为圆心,半径为的圆上,①如图所示,当点在的延长线上时,取得最大值,.,.当取得最大值时,;②如图所示,当点在线段上时,取得最小值,,,当取得最小值时,.22.如图所示,为等腰直角三角形,,直角顶点在第二象限,点在轴上移动,以为斜边向上作等腰直角,我们发现直角顶点点随着点的移动也在一条直线上移动,求这条直线的函数解析式.【答案】直线的函数解析式为.【详解】如图所示.当与轴平行时,过点作轴于点,过点作轴于点,交于点,是等腰直角三角形,点的坐标是,,,又是等腰直角三角形,,,点的坐标为.当与原点重合时,在轴上,此时,即,设所求直线解析式为:,将、代入得解直线的函数解析式为.23.如图所示,点,的半径为2,,,点是上的动点,点是的中点,求的最小值.【答案】的最小值为.【详解】解:如图所示,连接交于点,连接,,,由勾股定理得:,,,.当最小时,最小当运动到时,最小.此时的最小值为.24.如图所示,在等腰中,,点在以斜边为直径的半圆上,为的中点,当点沿半圆从点运动至点时,求点运动的路径长.【答案】点运动的路径长为.【详解】解:如图所示,取的中点,的中点,的中点,连接、、、、、,在等腰中,,..为的中点,..点在以为直径的圆上,当点与点重合时,点与点重合:当点与点重合时,点与点重合,易得四边形为正方形,,点运动的路径为以为直径的半圆.点运动的路径长为.25.如图1,已知在平面直角坐标系中,四边形是矩形点分别在轴和轴的正半轴上,连结,,,是的中点.(1)求OC的长和点的坐标;(2)如图2,是线段上的点,,点是线段上的一个动点,经过三点的抛物线交轴的正半轴于点,连结交于点①将沿所在的直线翻折,若点恰好落在上,求此时的长和点的坐标;②以线段为边,在所在直线的右上方作等边,当动点从点运动到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论