版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Acceleratinglow-carbonhydrogenandcutting
costswithdigital
technology
Digitalleversfor
enhancingand
acceleratingthe
developmentof
low-carbonhydrogen
Deliveringgreatervaluefromyour
low-carbonhydrogenassetsbyusingbetterassetinformationtoimproveinvestmentdecisionsandoperations.
Siemens
Index
ExecutiveSummaryScopeofthispaper
1.SiemensandCapgeminijointapproachforlow-carbonhydrogenasset
1.1OurValueProposition
1.2SiemensandCapgemini,arelevantpartnershipforthedigitalizationofthehydrogenindustry
2.Settingupthescene–definitions,frameworksandprerequisites
2.1Introducingthedigitaltwinforassetintensiveindustries
2.2Integratedengineering
2.3Prerequisitestounleashdigitalpotential
3.Unleashingpotential:Digitalization’sroleincuttingtheLevelizedCostofHydrogen
3.1Unlockingefficiency:Digitalleversforefficientdesignandengineering,fasterconstruction,andassetreplication
3.2Optimizingproduction:enhancingefficiencyfromenergysupplytooperationandmaintenance
3.2.1Energysupplyoperations3.2.2Productionprocesses
3.2.3Maintenance
3.3Enablingtraceability,compliancetargets,andcarbonintensity
3.4ManageefficientlyAssetsportfolio
3.5LCOHcanbereducedbyanestimated9%to12%activatingdigitalleversandassociatedactions
References
4
8
9
10
11
12
13
13
16
22
23
28
28
30
34
37
39
39
41
3
ExecutiveSummary
Despiteadynamictrend,thehydrogenmarketdoesnotprogressasfastasexpected
Thedecarbonizationpotentialoflow-carbonhydrogeninhard-to-abatesectors,coupledwithitscapacitytofacilitateenergytransporttoresource-constrained
regionsatscale,hasgeneratedsignificantenthusiasmwithinthehydrogensectorinrecentyears.However,despitegrowingannouncementsofnewlow-carbonhydrogenprojects–potentiallyreaching38Mtby
2030,ifallannouncedprojectsmaterialize-only4%ofprojectshavereachedthefinalinvestmentdecision
(FID)orconstructionphase,asreportedbythe
InternationalEnergyAgency(IEA).Clearly,wehavenotyetmetourobjectives.
Low-carbonhydrogenstillstrugglestobecomecompetitive
Low-carbonhydrogenremainstooexpensiveandlackscompetitivenesscomparedtocarbon-based
hydrogen.1Thecostrangesfrom6-9€/kg2for
low-carbonhydrogenversus1.5-3€/kgforhydrogenproducedfromnaturalgasreforming(before
subsidies).Thiscostdisparityarisesfromvariousfactorsrelatedtoproduction,infrastructure,and
technologicalrequirements.Transitioningtohydrogen
fromrenewablesisparticularlycostlyduetoexpensiveproductionprocessesandtheadvancedend-use
technologiesinvolved.Establishingthenecessary
infrastructureforhydrogenproduction,storage,anddistributionrequiressubstantialcapitalinvestment,
includingtheconstructionofrenewableenergyplants,electrolyzers,storagefacilities,andtransportation
networks.
Currentlythelow-carbonLevelizedCostofHydrogen(LCOH)producedviaelectrolysisprimarilycomprisespowercosts(representing40%to60%ofthetotal),equipment,engineeringandconstructioncosts(20%to35%)andoperationalcostsof(5%to15%).3The
LCOHishighlyinfluencedbytheloadfactor(includingavailability)whichimpactsproductionvolume,powerconsumption,andcapitalexpenditures(CAPEX)
amortization.
Thehydrogensectorisactivelyseekingleverstomitigatecosts
Asprojectsdevelopersadvanceintoearlyengineeringanddesignstages,assetdevelopersareactively
seekingwaystomitigatecostsandextensiveliteratureoutlinesstrategiestodrivedowncostsandposition
hydrogenasaneffectiveenergytransitionvector.
Whilesomelevershavealreadybeenemployedto
reduceinvestmentcostsinlow-carbonhydrogen,
additionalopportunitiesremainforplayersacrossthevaluechains,especiallyequipmentmanufacturersandassetdevelopers(seefigure1).
Systemdesignandengineering
Standardization
Laborcosts
Systemdesign
optimizationsolutions
SimulationenergyandH2lows(HMS,designtwin)
Developingautomationandvirtualcommissioning
GenerativeAI
ProcurementandConstruction
StorageTechnologies
Electrolyzerstechnologies
Modularization
Laborcosts
Constructiontwin
Dataanalytice
OperationsandMaintenance
Equipments’eiciency
ConnectedWorker
Operationstwin
Maintenancetwin
DigitalleversimpactCAPEX,electricitycostsandotherOPEXaswellasthevolumeofproduction
Electricitysupplycost
FrameworksforPPAcontracts
Flexibilitytechnologies
(Incl.BESS)
CapacitySizingOptimization(incl.RES,BESS)
Predectiveanalyticsforpowersupplystrategy
Digitallevers
Otherlevers
Figure1-LCOHreductionlevers4
4CapgeminixSiemens
5
Whydigitalizationwillplayapivotalrole
Asassetmanagersembracethedigitalage,creating“digitalnative”assetsbecomescrucial.ThisapproachensuresthecomprehensiveavailabilityofoperationalandassetdataforinformeddecisionmakingthroughDigitalAssetManagement.Bystrategicallyfocusing
onkeydecisionswithinassetprocessesand
transformingdataintoactionableinsights,assetmanagerscandeliversignificantbusinessvalue.
Digitalizationwillplayapivotalroleinenhancingtheinvestmentcaseforlow-carbonhydrogenprojectsbyoptimizingthedesign,operationsandmanagementofproductionassets5,asperthefollowingkeyfacts:
•Greenfieldassets:giventhatthelow-carbon
hydrogensectorisstillinitsearlystages,greenfieldprojectsofferasignificantopportunitytodevelopdigitalnativeproductionassetsandleverage
digitalizationevenpriortothecommencementofconstruction.Plantsarebeingbuiltforthefirsttimeandadigitaltwinoftheplantisgeneratedasa
by-productoftheengineeringprocesswithoutadditionaleffort.
•Scale-up:mostoftheplantsandassetscanactasablueprinttobereplicatedlater.
•Securingfinancing:adigitaltwincapableto
demonstratethevalidityoftheengineering,whichcanalsopredicttheeffectivenessoftherunningplantenablethesuccessfulclosingoffundraisingactivity.
•Respectingprojecttimeline:thesimulation
opportunitiesofferedbydigitaltoolsenabletoanticipate,avoiderrorsthatwouldoccurina
first-of-a-kindproject,andprepareforthestartofoperationsatanearlystage,-eventotrain
operators,viavirtualtrainings.
•Innovativefirstofakindplants:beingableto
simulatebeforeinvestinginthefinalconstructionbringsahugeadvantage.
•Newplayersandmaturityofthemarketplayers’roles:similarly,adigitalplantcanhelpovercomelackofexperiencefromnewincumbents.
•Manysimilarbutcomplexpackageunitsandcomponents,wheredigitaltoolsfacilitatethecomprehensiveintegrationofamodularsetup.
1.Forhydrogenproductiontobeconsideredlow-carbon,itmustcomeundertheEU’sproposedemissionsthresholdof3.38kgCO2e/kgH2,whichis70%lowerthanthatofthe
predefinedfossilfuelcomparator,includingtransportandothernonproductionemissions.IntheUS,thecorrespondingcarbonintensityvaluetoqualifyforhydrogenproductiontaxcreditsundertheIRAis4.0kgCO2e/kgH2.
2.Low-carbonhydrogenproducedwithelectrolysis.
3.Thesefiguresvaryaccordingtoprojects’configuration,buttheyrepresenttheorderofmagnitude.
4.PPA:PowerPurchaseAgreement;RES:RenewableEnergyStorage;BESS:BatteryEnergyStorageSystem
5.Thehydrogenproductionassetisdefinedbytheelectrolysisunitandeverythingthatsurroundsit,toenabletheultimateproductionoflow-carbonhydrogen.
KeyeconomicbenefitsfromdigitaltoolsovertheLCOH
DigitaltoolscanbringasignificantimpactinreducingtheLCOHthroughreducingthedevelopmentcostsofaproject,throughmoreeffectiveengineeringand
easierreplicabilityofsimilarprocessesand
components,andtheoperatingcoststhroughtheoptimizeddesignandclosecontrolofrunning
parametersinterfacedwiththedigitaltwindata.
Ouranalysisshowswithaconcreteexampleareductionbetween9%and12%oftheLCOHoverall,applyingthedifferentdigitalleversonareferencescenario.
ActivatingdigitalleversreducetheLCOHby~10%
LCOHinthe
reference
scenario
ImpactonCAPEX
ImpactonotherOPEX
Impactonenergy
costs
Volumeeffect*
LCOHwithdigitallevers
CAPEX
OtherOPEX
Electricitycosts
-4%to-5%
•Systemsdesignoptimization
solutions,mainlyprojecttwin
•GenerativeAI
~-1
•AssetO&Mtwin
(Operationstwinandmaintenancetwin)Connectedworker
-2%to-3%
•Microgridcontrolsolutions,
•BaseLoad
ManagementSystems,
•Energy
managementsystems
•Hydrogen
managementsystem
•Predictiveanalytics
-2%to-3%
•Energyeiciencysolution
•AssestO&Mtwin
•Anomalies
detectionsolutions
•Hydrogen
Managementsystem
*duetoadditionalproductionrelatedtoavailabilityand
efficiency
CAPEX
OtherOPEX
Electricitycosts
Figure2-ShareofOPEXandCAPEXcostsintheLCOHofa100MWalkalineelectrolysis
installationandpotentialreductionthroughdigitalsolutions.
Especially,this100MWelectrolyzerplant,running8000hoursayear,canreducetheyearlyenergybillby500k€ormorepereachpercentofoptimizationprovidedbythedigitaltwin.Theamountofpotentialcumulatedsavingsalongtheplantlifetimeshouldjustifyhavingdigitaltwinasatier1priorityinanyprojectinthisdomain.
Youwillfindassumptions,furtherdetailsandexamplesofSiemensdigitaltoolsrelatedtotheseLCOHoptimizationinsection3.
6CapgeminixSiemens
7
Weanalyzedtherolethatdigitalizationcanplaythroughoutthevaluechain
SiemensandCapgeminihaveanalyzedarangeof
digitalsolutionsandidentifiedspecificleversthatcanreducetheLevelizedCostofHydrogen(LCOH),
enablingcustomerseffectiveandfastadoptionofatailoreddigitaltoolsetspecificallydesignedtomaketheirprojectcompetitiveandfuture-proof.The
followingleversaredesignedtoassistproject
developers,operators,andassetmanagersin
addressingvariouschallengesandrefertoallphasesofaHydrogenProject.
1.Thedesign,engineeringandconstructionphase
–forprojectdevelopersandassetowners
•Designeffectivelythroughproperinput
requirementsprovidedasperOwner-Operator
mandatesandRegulatoryrequirements.
Optimizingassetdesignandengineeringthroughsimulationshelpsavoidingreworkbyenabling
clashdetections,accessibilityconcerns,etc.therebyreducingcostsandtimetoconstruct.
•Buildfasterandreducetimetooperations,
throughoutadata-centricapproach-especially3DComputerAidedDesign(CAD)-accelerating
collaborativeinteractionsbetweendifferent
engineeringdisciplinesinvolvedandstakeholdersespeciallybetweenEngineeringProcurement
Construction(EPC),OriginalEquipmentManufacturers(OEM)andAssetOwners
Operators(AOO)incompliancewithindustry
processandsafetystandardsusingapre-definedtoolsettoensureallengineeringdataisattheend
consistentandavailableforfurtheruseinoperation.
•Capitalize,replicateandscalefasteratlowercosts,leveragingontheknowledgebaseand
lessonslearntfromoneprojecttoanotherenabledbydigitaltwinblueprints.
2.Theoperationsandmaintenancephase–forassetownersandoperators
•Handoverthephysicalassetfromprojectto
operations,withallthedigitalinformation,
documents,procedures,manuals(operatingandmaintenance),3Dmodelsoftheequipmentand
instrumentationsdeployedintheassetalongwithSafetyandRegulatoryclearances.
•Operateefficientlyfromday1,through
accessibleandactivabledata,optimizingprocessparametersbybalancingproductivity,improvingqualityandmaintainingeffectiveenergy
consumptionacrossthevariouspartsoftheplant.Thisinformation/datadigitallyrecordedand
loggedhelpsfuturefleetofassets,both:
–inthecontrolroom,tomonitortheproduction,orchestrateproductionprocesswhilemaximizingthevalue,basedonmarketsprices,contractualcommitmentsandplannings(incl.maintenance)
–ontheshopfloor,toautomateproductionprocesses
andprovidetheworkerswithrelevantinformation(e.g.usingadigitaltwinformaintenance)
•Improveproductioncontinuity,avoid
unexpectedproductionstopsandmaximize
availability.Thekeyroleofmaintenanceteamsisnotonlytomaintainproductioncontinuitybut
alsotomaximizeassetlifethrougheffective
preventivemaintenanceprograms,leverage
predictivemaintenancedigitaltwinsandplanforsparepartswellinadvancetoensurelong-termreliabilityoftheassets.
3.Traceability–fortheentireecosystem:ensuretraceability,especiallycarboncontenttrackingtocomplywithclients’specificationsorregulatoryneeds.
4.Theassetsportfoliomanagement–forassetowners
•Optimizeassetsplanning.
•IntegratenewassetswithexistinglegacyassetslikeO&GorRenewables.Thiswillalsodefinenewfutureassetinvestmentbusinessmodelsand
organizationalstrategieswhichneedstobethoughtthroughandoptimized.
CapgeminiandSiemensstandreadytosupportthetransitiontowardsalow-carboneconomy.
Anyinitiativetargetingtodelivervalueandatimely
achievementofproject’smilestonestoitsinvestors,
shallputthecreationofitsowndigitalroadmap
amongfirstprioritiessincethebeginningofthe
projectdevelopment.SiemensandCapgeminican
effectivelysupporttogetherthesecustomerswitha
combinedapproachofbroadconsultingservices,
best-of-the-classdigitaltools,experiencedandtrainedengineeringresources.Throughtheirinnovative
solutionsandstrategiccollaborations,CapgeminiandSiemensstandreadytosupportthetransitiontowardsalow-carboneconomy.
Thispaperwillthengiveimportantinsightsonhow
CapgeminiandSiemenscanconsultandsupport
owners,operators,EPCcompaniesinachievingtheir
goalsandovercomingthechallengesrelatedtoscaling
upandindustrializinglow-carbonmarkettechnologies.
Scopeofthispaper
ThispaperdelvesintothedigitalleversthatcanreducetheLCOHwhileintroducingthejointvaluepropositionofCapgeminiandSiemens,
showinghowtheDigitalHydrogenplantwithaholisticdigitaltwin
conceptiskeytoreducingtheLCOH.Itcoverscostsinallphasesofahydrogenproject,fromInvestmentDecisions,BasicEngineering,PlantEngineeringandconstructionuptooperations.
Opportunityanalysis&projectlaunch
Feasibilitystudy
Process
engineering
Plant&packageunitengineering
Construction
Packageunitintegration
FAT
Operations
Figure3-Projectstages
Thefocusofthispapercentersonhydrogen
production,particularlyinacontextofelectrolysis,butitrepresentsonlyafractionofthebroaderscopethatSiemensandCapgeminicancollectivelyaddresswithinthehydrogendomain.Theirtechnologicalexpertise
andindustryacumenextendtodistribution,
derivativesproduction,theutilizationofhydrogentodecarbonizingindustry,transportationandtheenergysector.Asacomplementaryassetinhard-to-abate
sectorswhereelectrificationfaceseconomicor
technologicalchallenges,hydrogencanhaveapivotalrole.
Forexample,sustainableaviationfuel,methanol,andammoniaproductioncanleveragelow-carbon
hydrogenwithadvanceddigitalsolutionsoptimizing
conversionprocessestoenhanceefficiency,
sustainability,andmitigatefinancialandtechnicalrisks.
ProductionDistributionUsage
EnergysourceH2production1)Pre-transportationprocessingStorageandtransportationEndsectors
Directusewithlocalhydrogenproduction
Industry
Chemicals/ammoniaPetroleumreinementSteelproduction
Others
Grid
mgmt.
Water
electrolysis
(incl.ramp-upofelectrolyzerproduction)
BlueandgreyGreen(NEW)
CarbonCapture,
UtilizationandStorage
Renewableenergies(e.g.,solar,wind)
Gaspipeline
(e.g.,compressedH2)
Hydrogen
compressionandpuriication
Batterystorage
Liqueiedhydrogen
Trucking
(e.g.,compressedH2,LOHCintanks)
Mobility
Synthetic/e-fuels
(e.g.,foraviation,marine)
Naturalgas
Steam
Methane
Reforming
Local
storage
and
distribution
GreenH2asfuel
(e.g.,fuelcell,ICE,illingstation)
New
Energy
Re-electriication(e.g.,fuelcells,
gasturbineetc.)
Heatinginbuildings
New
Ammonia
asenergycarrier
Shipping
(e.g.,liquid
hydrogen/
ammonia/
methanolvessel)
Coal
Coal
gasiication
Hydrocarbon(Incl.methanoletc.)
Bulkstorage(e.g.,cavern)
H2
Figure4-Hydrogensupplychain:fromenergysourcetohydrogenusage
8CapgeminixSiemens
1.
SiemensandCapgeminijointapproachfor
low-carbonhydrogenassets
1.1Ourvalueproposition
Combiningdeepknowledgeandexperienceinthe
hydrogenindustry,technicalexcellenceandend-to-endindustrialassetdigitalization,weatCapgeminiandSiemensextendourhistoriccollaborationtothehydrogenfield.
Whetheryouareaplantowner,anEPCoraplant
operator,CapgeminiandSiemenscansupportyouinmeetingyourkeychallenges:
Wemanagecomplexitytode-riskyourinvestment
•Weleverageadvancedsimulationtoolsto
helpyounavigateuncertainty,envisionmultiplecomplexscenarios,andmitigatefinancial,
regulatory,andoperationalrisksallatonce.
•Wecapitalizeonourextensivecrossindustryexperiencetoprojectyourindustrialasset
futureperformanceandmakethebestinvestmentdecisions.
Wedeliverinvestmentandoperationalcostreductiontoclosethecompetitivenessgap
•Weemployourdesign,engineering,and
simulationsolutionsinearlyphasestobuild
aplantthatcloselymeetsyourcurrentand
futureneedswhileoptimizingCAPEXandOPEXthroughouttheentireprojectlifecycle.
•Wealignyourindustrialstrategyandproductionsetupwithtailoredenergyprocurement
strategiestooptimizethepriceoflow-carbon
energy,whichremainsamajordriveroftheLCOH.Wesupplyandintegrateenergymanagement
andflexibilitysolutionstoenablethosestrategies.
•Weassistyouinidentifyingprocess
optimizationopportunities,reducingenergyandwaterconsumption.
Weconnectanddigitalizetheentirehydrogen
ecosystemtoacceleratetheadoptionoflow-carbonsolutions
•Ourexpertiseinthehydrogenindustryallowsustoknowestablisheddatastandardsandthemosteffectivemethodsforstructuringandsharing
information.Byadoptingadata-centricapproachandcreatingasinglesourceoftruth,wefacilitate
collaborationacrossthevaluechainandhelpyouaccelerateyourgo-to-marketstrategy.
•Wedeployend-to-endtraceabilitysolutions
thatarerecognizedbyendusersandpublic
authoritiestocertifythecarbonintensityofthehydrogenyouproduce,ensuringitsmarketabilityandprofitability.
•Wecreatedigitaltwinsthataccumulate
knowledgethroughouttheprojectlifecycle.Thesedigitalreplicasfunctionatdifferentstages—
‘as-designed,’‘as-built,’and‘as-operated’—servingasblueprintsforfuturehydrogenprojects.
Wehelpyoudevelopfuture-proof,robustindustrialassetsfromday1
•Weassistyouinbuildingdigital-nativeassetswithatechstackarchitectureenablingdigitalcontinuity.Youwillbereadytocapturethe
valuethatdigitaltechnologiesoffertodayandtomorrow.
•Withouradvanceddesignandengineering
solutions,youareideallypositionedtoscaleup,usingstandardizedproductionelements,optimizingtheircompatibility,andsimulatingtheexpansionorreplicationofyourplantsinthefuture.
•Weensuretheintegrityofyourindustrialassetswithbest-in-classcybersecuritysolutions.
Weempoweroperationteamstomakedata-informedoptimizationdecisionsthatleadtoprofitableresults
•Wepromoteandenableaholisticdecision-
makingapproach,combiningrealtime
processmonitoringdataandlong-termCAPEXconsiderationstosecureyourtargetlevelizedcostofhydrogenandyourprofitmargin.
•Toachievethis,weimplementacomprehensiveportfolioofsolutionsforon-sitemeasurement,dataanalytics,andreal-timemonitoring.
•Wetranslatecontrolroomdecisionsintoaction
byofferingautomationandconnectivitysolutionsforfieldworkers,whilealsoconductingchange
toeffectivelyharnessthefullpotentialofdigitaltools.
10CapgeminixSiemens
1.2SiemensandCapgemini,arelevantpartnershipforthedigitalizationofthe
hydrogenindustry
SiemensandCapgeminicollaborateas
complementarypartnerstofullyleveragedigitaltransformationthroughoutthe
low-carbonhydrogenvaluechain.Siemens,
withitsexpertiseinenergyandchemicals
sectors,offersadvanceddigitalizationand
automationsolutions.Meanwhile,Capgemini,atrustedbusinessandtechnological
transformationpartnerforglobalindustrialleaders,identifieshigh-valueusecases,
definesdigitaltransformationroadmaps
alignedwithindustrialstrategies,implementstechnologicalsolutions,anddriveschange.
11
2.
Settingupthe
scene–definitions,frameworksand
prerequisites
CapgeminiSiemens
13
2.1Introducingthedigitaltwinforassetintensiveindustries
Thedigitaltwinisavirtualrepresentationofthe
currentandalmostfuturephysicalreality,e.g.,ofa
product,aproductionprocess,aplanthavingmultiplecriticalassets(pumps,motorsandrespectivepipelinevalves,etc.),includingtheirbehaviorandhealthstatus.Itbringstogetherdatafromalllifecyclephasesand
fromallfunctionsandlevels,helpingtounderstand,manageandpredicttheperformanceofthe
correspondingprocessorplantandtherebylayingthegroundworkforinformeddatadrivendecisions
throughdatacentricapproach.
Byreplicatingreal-worldplantoperationsinvirtualsimulations,engineersandoperatorscanfine-tunedesigns,identifypotentialissuesearlyon,and
streamlinetheirprocesses.Thisnotonlyreduces
commissioningtimesbutalsoslashescosts,makinghydrogenproductionmoreeconomicallyviable.Thisenablesthereductionincommissioningtimesfromaregulatoryandauditoryperspective,enhances
informationhandovertoOwnerOperatorsteams
therebyslashingrelatedcosts,fastergotomarketin
termsofproductionoutputmakingitmoreeconomicallyviable.
Butwhatexactlyaredigitaltwins?
Adigitaltwinisavirtualreplicaofaphysicalasset,
suchasaproductionplant,thatconsolidatesdata
fromalllifecyclephases.Byharnessingthepowerofsimulationmodelsandprocessengineeringsoftware,engineerscandesignandoptimizeplantlayouts,
createdetailedprocessflowdiagrams,andplan
automationsystemswithprecision.Italsoenables
bestinclassconstructionpracticesbysimulatingclashdetections,constructionworkersafetyand
accessibilityscenariosandfutureO&MactivitiesfortheAOO.
Anothercrucialaspectofdigitaltwinsisthepotentialforscalabilityandinnovation.Withtheabilitytocopy(bynumberingupper“drag-and-Drop”)andrebuild
entirehydrogenplantsvirtually,engineerscanexplorenewdesignconcepts,usingthedigitaltwinofthe
plantasablueprint,toexperimentwithdifferent
configurations,andscaleupproductionseamlessly.ItisalsothinkablethatanelectrolyzerManufacturer
couldusethattomakeaworld-widefleet
managementofanyoftheirdeliveredelectrolyzerstofurtheroptimizeorprovideserviceandsupport.Thisnotonlyacceleratestime-to-marketbutalsolaysthegroundworkforthewidespreadadoptionofgreen
hydrogenproduction
CapgeminiandSiemensseeaspecialmomentumforadoptionofaholisticdigitaltwinsinGreenH2
Productionlandscapethatwillmaintaininformationcontinuitythroughtheassetlifecycle.
2.2Integratedengineering
Theabove-mentionedstepscanberealizedusing
integratedengineeringtointegratedoperation.Thedigitaltwinisasecondaryresultoftheintegrated
engineeringprocess.
Integratedengineeringactuallyreferstoan
approachofaugmentedengineeringwith
automationandsimulation.Thisrequiresusingadefinedall-embracingtoolsetforsimulationandengineering,tomakesureallengineeringdataisconsistentandaccessibleinoneplatform.
Digitaltwinsenableseamlessintegrationintoexistingenergysystems,allowingoperatorstobettermanagefluctuatingenergysuppliesfromrenewablesources.Byaccuratelysimulatingplantoperations,operatorscanoptimizeenergyusage,minimizecosts,and
maximizeoverallsystemflexibility.
6.Therepresentationsareprobabilisticandapproximateanddependsonaccuracyofhistoricalandreal-timedataandanyunknownphenomenoncanalterfuturerealityevenifallhistoricalinformationiscorrect.Inthatsense,digitaltwinisnotatrue–evenifvirtual–representationofa“futurephysicalreality”.
H2processInput
(i.esimulationwithgPROMS)
Input
•Processandmaterialdata
•Designparameters
•Blockflowdiagrams
Engineering
P&IDs
EI&C
PAA
•Automationengineering
•Installation
IntegratedinCOMOS
•Processplanningandengineering
•P&IDs
•El&Cengineering
•Parameterization
Output
IntegratedinCOMOS
DCS
(SIMATICPCS7)
xml-interface
ImportBPCMlibraryExportautomationdata
GUI(GraphicalUserInterface)design
3D-Mockup(simple3Dmodel)
(COMOSWalkinside)
Maintenance,RepairandOperationsManagement
PlantSimulation
(SIMIT)
Results
•Dynamicsimulation
templatesinSIMITlinkedwithSIMATICPCS7
•Layoutplanning
•Plantvisialization
•Maintainancescheduling
•Plantmanagement
•3D-Mockupforeach
templateandthewholeplant
•Virtualcommissioning
•Operatortraining
Figure5-IntegratedapproachwithSiemenssolutionsforholisticdataexchangebetweenmodeling,processengineering,simulationandautomation
Integratedengineeringphaseinvolvescomplextaskstoensuresmoothhydrogenproductiondesign
implementation:
•Ensuringdataconsistencyacrossdisciplinesisaprimarychallenge,asinconsistentdatacancauseerrors,delays,andincreasedcosts.
•Thoroughtestingandtrainingareessentialtoreducestartuptimeandcosts.Virtual
commissioningandoperatortrainingspreventoperationalinefficienciesandsafetyincidents.
Aunifieddatabaseforseamlessdataflowimproves
decision-makingandreducesengineeringcycletimes.
Thismakesitpossibletouse
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学一年级作文快乐的周末
- 2024年分子诊断试剂合作协议书
- 2 位置(教案)五年级上册数学人教版
- 2024-2025高中地理模块素养评价含解析新人教版必修3
- 2024-2025学年新教材高中地理第二章资源环境与区域发展2生态脆弱区的综合治理学案新人教版选择性必修2
- 2025届高考地理一轮复习第十七章区际联系与区域协调发展第1讲资源的跨区域调配-以我国西气东输为例教案新人教版
- 玉溪师范学院《国画》2021-2022学年第一学期期末试卷
- 2024安防监控合同范本
- 2024年计算机典型应用系统项目发展计划
- 2024标准雇佣合同格式
- 北京市第十届迎春杯小学数学竞赛决赛试卷
- 大象版五年级科学上册第五单元《小小机械师》全部课件(共5课时)
- 《民航地面服务与管理》课程标准
- 陶瓷釉料配方600例
- Unit+5+Into+the+Unknown+Understanding+ideas+教学设计 高二下学期英语外研版(2019)选择性必修第四册
- 装订档案封皮打印模板
- 血管外科手术介入治疗基础知识课件
- 构建小区和谐重要性
- 23331-2020能源管理体系要求及使用指南
- “玩工”与“玩乐劳动”:数字资本主义的游戏形式、同意制造与价值剥削
- ISO9001 2015版质量管理体系标准
评论
0/150
提交评论