2024-2025学年四川省南充市营山县春城北实验学校九上数学开学学业水平测试试题【含答案】_第1页
2024-2025学年四川省南充市营山县春城北实验学校九上数学开学学业水平测试试题【含答案】_第2页
2024-2025学年四川省南充市营山县春城北实验学校九上数学开学学业水平测试试题【含答案】_第3页
2024-2025学年四川省南充市营山县春城北实验学校九上数学开学学业水平测试试题【含答案】_第4页
2024-2025学年四川省南充市营山县春城北实验学校九上数学开学学业水平测试试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年四川省南充市营山县春城北实验学校九上数学开学学业水平测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列数中不是有理数的是()A.﹣3.14 B.0 C. D.π2、(4分)如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有()A.2个 B.3个 C.4个 D.5个3、(4分)在“美丽乡村”评选活动中,某乡镇5个村的得分如下:90,88,96,92,96,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,924、(4分)已知一组数据1,l,,7,3,5,3,1的众数是1,则这组数据的中位数是().A.1 B.1.5 C.3 D.55、(4分)点()在函数y=2x-1的图象上.A.(1,3) B.(−2.5,4) C.(−1,0) D.(3,5)6、(4分)如图,在四边形ABCD中,AD∥BC,∠BCD=90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D',BC与C'D'相交于点E,若BC=8,CE=3,C'E=2,则阴影部分的面积为()A.12+2 B.13 C.2+6 D.267、(4分)下列图形中,是中心对称但不是轴对称图形的有()A.1个 B.2个 C.3个 D.4个8、(4分)下列方程没有实数根的是()A.x3+2=0 B.x2+2x+2=0C.=x﹣1 D.=0二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若n边形的内角和是它的外角和的2倍,则n=.10、(4分)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是11、(4分)计算或化简(1)(2)12、(4分)已知一组数据3、a、4、6的平均数为4,则这组数据的中位数是______.13、(4分)如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平行四边形中,,是中点,在延长线上,连接相交于点.(1)若,求平行四边形的面积;(2)若,求证:.15、(8分)如图,直线AB与x轴交于点C,与y轴交于点B,点A(1,3),点B(0,2).连接AO(1)求直线AB的解析式;(2)求三角形AOC的面积.16、(8分)(问题原型)如图,在中,对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.(小海的证法)证明:是的垂直平分线,,(第一步),(第二步).(第三步)四边形是平行四边形.(第四步)四边形是菱形.(第五步)(老师评析)小海利用对角线互相平分证明了四边形是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了.(挑错改错)(1)小海的证明过程在第________步上开始出现了错误.(2)请你根据小海的证题思路写出此题的正确解答过程,17、(10分)如图,矩形中,点在边上,将沿折叠,点落在边上的点处,过点作交于点,连接.(1)求证:四边形是菱形;(2)若,求四边形的面积.18、(10分)平行四边形ABCD在平面直角坐标系中的位置如图所示,已知AB=8,AD=6,∠BAD=60°,点A的坐标为(-2,0).求:(1)点C的坐标;(2)直线AC与y轴的交点E的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知,则的值是_______.20、(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD=2,AE=3,则正方形ODCE的边长等于________.21、(4分)如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.22、(4分)一组数据2,6,,10,8的平均数是6,则这组数据的方差是______.23、(4分)分式与的最简公分母是__________.二、解答题(本大题共3个小题,共30分)24、(8分)已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,连接EC,AG.(1)当点E在正方形ABCD内部时,①根据题意,在图1中补全图形;②判断AG与CE的数量关系与位置关系并写出证明思路.(2)当点B,D,G在一条直线时,若AD=4,DG=,求CE的长.(可在备用图中画图)25、(10分)如图,在矩形ABCD中,AB=8,BC=6.将矩形ABCD沿过点C的直线折叠,使点B落在对角线AC上的点E处,折痕交AB于点F.(1)求线段AC的长.(2)求线段EF的长.(3)点G在线段CF上,在边CD上存在点H,使以E、F、G、H为顶点的四边形是平行四边形,请画出▱EFGH,并直接写出线段DH的长.26、(12分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据有理数的定义选出正确答案,有理数:有理数是整数和分数的统称,一切有理数都可以化成分数的形式.【详解】解:A、﹣3.14是有理数,故本选项不符合题意;B、0是整数,是有理数,故本选项不符合题意;C、是分数,是有理数,故本选项不符合题意;D、π是无理数,不是有理数,故本选项符合题意,故选D.本题主要考查了有理数的定义,特别注意:有理数是整数和分数的统称,π是无理数.2、C【解析】

分情况,BC为腰,BC为底,分别进行判断得到答案即可【详解】以BC为腰时,以B为圆心画圆将会与AB有一个交点、以C为圆心画圆同样将会与AB有两个个交点;以BC为底时,做BC的垂直平分线将会与AB有一个交点,所以BC为边作等腰三角形在AB上可找到4个点,故选C本题主要考查等腰三角形的性质,充分理解基本性质能够分情况讨论是本题关键3、B【解析】

众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】众数是一组数据中出现次数最多的数,在这一组数据中96出现了2次,次数最多,故众数是96;将这组数据从小到大的顺序排列为:88,90,1,96,96,处于中间位置的那个数是1,那么由中位数的定义可知,这组数据的中位数是1.故选:B.本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4、B【解析】

数据1,1,x,7,3,2,3,1的众数是1,说明1出现的次数最多,所以当x=1时,1出现3次,次数最多,是众数;再把这组数据从小到大排列:1,1,1,1,3,3,2,7,处于中间位置的数是1和3,所以中位数是:(1+3)÷1=1.2.故选B.5、D【解析】

将各点坐标代入函数y=2x−1,依据函数解析式是否成立即可得到结论.【详解】解:A.当时,,故不在函数的图象上.B.当时,,故不在函数的图象上.C.当时,,故不在函数的图象上.D.当时,,故在函数的图象上.故选:D.本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.6、B【解析】

利用平移的性质得到B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,然后根据S阴影部分=S梯形BB′C′E进行计算.【详解】解:∵四边形ABCD沿AB方向平移得到四边形A'B'C'D',∴B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,∴C′D′⊥BE,∴S阴影部分=S梯形BB′C′E=(8﹣3+8)×2=1.故选:B.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.7、B【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:第1个图形,是轴对称图形,不是中心对称图形,故错误;第2个图形,不是轴对称图形,是中心对称图形,故正确;第3个图形,不是轴对称图形,是中心对称图形,故正确;第4个图形,是轴对称图形,也是中心对称图形,故错误;故选B.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、B【解析】

根据立方根的定义即可判断A;根据根的判别式即可判断B;求出方程x2-3=(x-1)2的解,即可判断C;求出x-2=0的解,即可判断D.【详解】A、x3+2=0,x3=﹣2,x=﹣,即此方程有实数根,故本选项不符合题意;B、x2+2x+2=0,△=22﹣4×1×2=﹣4<0,所以此方程无实数根,故本选项符合题意;C、=x﹣1,两边平方得:x2﹣3=(x﹣1)2,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;D、=0,去分母得:x﹣2=0,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;故选B.本题考查了解无理方程、解分式方程、解一元二次方程、根的判别式等知识点,能求出每个方程的解是解此题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、6【解析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=610、(,0).【解析】试题分析:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,),∴n=2+m,即E点坐标为(2+m,),∴k=2•m=(2+m),解得m=1,∴E点坐标为(3,),设直线GF的解析式为y=ax+b,把E(3,),G(0,﹣2)代入得,解得,∴直线GF的解析式为y=x﹣2,当y=0时,x﹣2=0,解得x=,∴点F的坐标为(,0).考点:反比例函数与一次函数的交点问题.11、(1);【解析】

(1)根据根式的计算法则计算即可.(2)采用平方差公式计算即可.【详解】(1)原式(2)原式本题主要考查根式的计算,这是必考题,应当熟练掌握.12、3.5【解析】

先根据平均数的计算公式求出x的值,再根据中位数的定义即可得出答案.【详解】∵数据3、a、4、6的平均数是4,∴(3+a+4+6)÷4=4,∴x=3,把这组数据从小到大排列为:3、3、4、6最中间的数是3.5,则中位数是3.5;故答案为:3.5.此题考查中位数,算术平均数,解题关键在于利用平均数求出a的值.13、2【解析】

由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【详解】解:∵正方形ABCD的面积为1,

∴BC=CD==1,∠BCD=90°,

∵E、F分别是BC、CD的中点,

∴CE=BC=,CF=CD=,

∴CE=CF,

∴△CEF是等腰直角三角形,

∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;

故答案为2.本题考查正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解题关键.三、解答题(本大题共5个小题,共48分)14、(1)18;(2)见解析【解析】

(1)过点A作AH⊥BC于H,由AC=BC,∠ABC=75°,得出∠ACB=30°,则AH=AC=BC=3,S平行四边形ABCD=2S△ABC=2×BC•AH,即可得出结果;(2)过点A作AN∥CE,交BG于N,则∠ECA=∠CAN,由E是AB中点得出EF是△ABN的中位线,则EF=AN,证明∠GBC=∠ECA,∠GBC=∠G,∠ACB=∠CAG得出∠ECB=∠ECA=∠CAN=∠GAN,推出∠GAN=∠G,则AN=GN,由平行线的性质得出==1,得出BF=FN,即可得出结论.【详解】(1)解:作,垂足为,则∵,∴,∴,∴;(2)过点A作AN∥CE,交BG于N,如图2所示:则∠ECA=∠CAN,

∵E是AB中点,

∴EF是△ABN的中位线,

∴EF=AN,

∵AC=BC,E是AB中点,

∴∠ECB=∠ECA,

∵∠GBC=∠ECB,

∴∠GBC=∠ECA,

∵四边形ABCD是平行四边形,

∴BC∥AD,

∴∠GBC=∠G,∠ACB=∠CAG,

∴∠ECB=∠ECA=∠CAN=∠GAN,

∴∠GAN=∠G,

∴AN=GN,

∵EF∥AN,,∴BF=FN,

∴GF=GN+FN=AN+BF,

∴GF=BF+2EF.考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质、全等三角形的判定与性质、三角形中位线的判定与性质、平行四边形与三角形面积的计算等知识,熟练掌握平行四边形的性质、构建三角形中位线、证明等腰三角形是解题的关键.15、(1)y=x+2;(2)1.【解析】

(1)设直线AB的解析式为y=kx+b,把A、B的坐标代入求出k、b的值即可,(2)把y=0代入(1)所求出的解析式,便能求出C点坐标,从而利用三角形的面积公式求出三角形AOC的面积即可.【详解】(1)设直线AB的解析式y=kx+b,把点A(1,1),B(0,2)代入解析式得:,解得:k=1,b=2,把k=1,b=2代入y=kx+b得:y=x+2,直线AB的解析式:y=x+2;(2)把y=0代入y=x+2得:x+2=0,解得:x=﹣2,∴点C的坐标为(﹣2,0),∴OC=2,∵△AOC的底为2,△AOC的高为点A的纵坐标1,∴S△ABC=2×1×=1,故三角形AOC的面积为1.本题考查了待定系数法求一次函数解析式和三角形的面积,解答本题的关键是明确题意,用待定系数法求出一次函数解析式.16、(1)二;(2)见解析.【解析】

(1)由垂直平分线性质可知,AC和EF并不是互相平分的,EF垂直平分AC,但AC并不平分EF,需要通过证明才可以得出,故第2步出现了错误;(2))根据平行四边形性质求出AD∥BC,推出,证,推出,可得四边形是平行四边形,推出菱形.【详解】(1)二(2)四边形是平行四边形,..是的垂直平分线,.在与中,..四边形是平行四边形..四边形是菱形.本题考查菱形的判定,以及平行四边形的性质,关键是掌握对角线互相垂直的平行四边形是菱形17、(1)详见解析;(2)【解析】

(1)根据题意可得,因此可得,又,则可得四边形是平行四边形,再根据可得四边形是菱形.(2)设,则,再根据勾股定理可得x的值,进而计算出四边形的面积.【详解】(1)证明:由题意可得,,∴,∵,∴,∴,∴,∴,∴四边形是平行四边形,又∵∴四边形是菱形;(2)∵矩形中,,∴,∴,∴,设,则,∵,∴,解得,,∴,∴四边形的面积是:.本题主要考查菱形的判定,关键在于首先证明其是平行四边形,再证明两条临边相等即可.18、(1)C(3,);(1)E(0,)【解析】

(1)过C作CH⊥x轴于点H,利用平行四边形的性质结合直角三角形的性质得出C点坐标;(1)利用待定系数法求出一次函数解析式,再利用x=0进而得出答案.【详解】解:(1)过C作CH⊥x轴于点H,∵四边形ABCD为平行四边形,∴CD=AB=8,BC=AD=2,AB//DC,AD//BC.∴∠BAD=∠HBC∵∠BAD=20°,∴∠HBC=20°.∴BH=3,CH=.∵A(-1,0),∴AO=1.∴OB=2.∴OH=OB+BH=3.∴C(3,).(1)设直线AC的表达式为:y=kx+b,把A(-1,0)和C(3,)代入,得∴,解得:∴.∴E(0,)此题主要考查了平行四边形的性质和待定系数法求一次函数解析式,正确掌握平行四边形的性质是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

先对原式进行化简,然后代入a,b的值计算即可.【详解】,.,,∴原式=,故答案为:.本题主要考查二次根式的运算,掌握完全平方公式和平方差是解题的关键.20、1【解析】

设正方形ODCE的边长为x,则CD=CE=x,根据全等三角形的性质得到AF=AE,BF=BD,根据勾股定理即可得到结论.【详解】解:设正方形ODCE的边长为x,

则CD=CE=x,

∵△AFO≌△AEO,△BDO≌△BFO,

∴AF=AE,BF=BD,

∴AB=2+3=5,

∵AC2+BC2=AB2,

∴(3+x)2+(2+x)2=52,

∴x=1,

∴正方形ODCE的边长等于1,

故答案为:1.本题考查了勾股定理的证明,全等三角形的性质,正方形的性质,熟练掌握勾股定理是解题的关键.21、1【解析】

根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.【详解】解:∵AM⊥BM,点D是AB的中点,

∴DM=AB=3,

∵ME=DM,

∴ME=1,

∴DE=DM+ME=4,

∵D是AB的中点,DE∥BC,

∴BC=2DE=1,

故答案为:1.点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.22、8.【解析】

根据这组数据的平均数是6,写出平均数的表示式,得到关于x的方程,求出其中x的值,再利用方差的公式,写出方差的表示式,得到结果.【详解】∵数据2,6,,10,8的平均数是6,∴∴x=4,∴这组数据的方差是.考点:1.方差;2.平均数.23、【解析】

先把分母分解因式,再根据最简公分母定义即可求出.【详解】解:第一个分母可化为(x-1)(x+1)

第二个分母可化为x(x+1)

∴最简公分母是x(x-1)(x+1).故答案为:x(x-1)(x+1)此题的关键是利用最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作最简公分母.二、解答题(本大题共3个小题,共30分)24、(1)①见解析;②AG=CE,AG⊥CE,理由见解析;(2)CE的长为或【解析】

(1)①根据题意补全图形即可;

②先判断出∠GDA=∠EDC,进而得出△AGD≌△CED,即可得出AG=CE,延长CE分别交AG、AD于点F、H,判断出∠AFH=∠HDC=90°即可得出结论;

(2)分两种情况,①当点G在线段BD的延长线上时,②当点G在线段BD上时,构造直角三角形利用勾股定理即可得出结论.【详解】解:(1)当点E在正方形ABCD内部时,①依题意,补全图形如图1:②AG=CE,AG⊥CE.

理由:

在正方形ABCD,

∴AD=CD,∠ADC=90°,

∵由DE绕着点D顺时针旋转90°得DG,

∴∠GDE=∠ADC=90°,GD=DE,

∴∠GDA=∠EDC

在△AGD和△CED中,,

∴△AGD≌△CED,

∴AG=CE.

如图2,延长CE分别交AG、AD于点F、H,

∵△AGD≌△CED,

∴∠GAD=∠ECD,

∵∠AHF=∠CHD,

∴∠AFH=∠HDC=90°,

∴AG⊥CE.

(2)①当点G在线段BD的延长线上时,如图3所示.

过G作GM⊥AD于M.

∵BD是正方形ABCD的对角线,

∴∠ADB=∠GDM=45°.

∵GM⊥AD,DG=∴MD=MG=2,

∴AM=AD+DM=6

在Rt△AMG中,由勾股定理得:AG==,同(1)可证△AGD≌△CED,

∴CE=AG=

②当点G在线段BD上时,如图4所示,

过G作GM⊥AD于M.

∵BD是正方形ABCD的对角线,

∴∠ADG=45°

∵GM⊥AD,DG=∴MD=MG=2,

∴AM=AD-MD=2

在Rt△AMG中,由勾股定理得:AG==,同(1)可证△AGD≌△CED,

∴CE=AG=.故CE的长为或.此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,解(1)的关键是判断出△AGD≌△CED,解(2)的关键是构造直角三角形,是一道中考常考题.25、(1)AC=10;(2)EF=3;(3)见解析,DH

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论