版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年四川省成都市天府七中学九年级数学第一学期开学综合测试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在直角坐标系中,点关于原点对称的点为,则点的坐标是()A. B. C. D.2、(4分)下列图形中的曲线不表示y是x的函数的是()A. B. C. D.3、(4分)计算=()A. B. C. D.4、(4分)(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A.甲比乙的产量稳定 B.乙比甲的产量稳定C.甲、乙的产量一样稳定 D.无法确定哪一品种的产量更稳定5、(4分)如图,已知正方形面积为36平方厘米,圆与各边相接,则阴影部分的面积是()平方厘米.()A.18 B.7.74 C.9 D.28.266、(4分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2 B.2.2 C.2.4 D.2.57、(4分)已知x=-1是一元二次方程x2+px+q=0的一个根,则代数式p-q的值是()A.1 B.-1 C.2 D.-28、(4分)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,则点C的纵坐标y与x的函数解析式是()A.y=x B.y=1﹣x C.y=x+1 D.y=x﹣1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)不等式的正整数解为______.10、(4分)如图,A,B的坐标为(1,0),(0,2),若将线段AB平移至A1B1,则a﹣b的值为____.11、(4分)将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是_____.12、(4分)如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.过点D作DG∥BE,交BC于点G,连接FG交BD于点O.若AB=6,AD=8,则DG的长为_____.13、(4分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,若∠ADB=36°,则∠E=_____°.三、解答题(本大题共5个小题,共48分)14、(12分)规定两数a,b之间的一种运算,记作,如果,那么(a,b)=c,例如:因为21=8,所以(2,8)=1.(1)根据上述规定,填空:_____,_____;(2)小明在研究这种运算时发现一个现象,,小明给出了如下的证明:设,则,即,∴,即,∴请你尝试用这种方法证明下面这个等式:15、(8分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.16、(8分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.17、(10分)如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.18、(10分)如图,在四边形ABCD中,∠ADC=90°,AB=AC,E,F分别为AC,BC的中点,连接EF,ED,FD.(1)求证:ED=EF;(2)若∠BAD=60°,AC平分∠BAD,AC=6,求DF的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.20、(4分)在三角形中,点分别是的中点,于点,若,则________.21、(4分)计算:=______________22、(4分)如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线l∥BC,则∠1=______.23、(4分)一天,小明放学骑车从学校出发路过新华书店买了一本课外书再骑车回家,他所行驶的路程s与时间t的关系如图,则经18分钟后,小明离家还有____千米.二、解答题(本大题共3个小题,共30分)24、(8分)正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.
25、(10分)解不等式组,并将不等式组的解集在下面的数轴上表示出来:.26、(12分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(-1,2)、B两点,求m、n的值并直接写出点B的坐标.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
根据坐标系中关于原点对称的点的坐标特征:原坐标点为,关于原点对称:横纵坐标值都变为原值的相反数,即对称点为可得答案.【详解】解:关于原点对称的点的坐标特征:横纵坐标值都变为原值的相反数,所以点有关于原点O的对称点Q的坐标为(-2,-1).故选:B本题考查了对称与坐标.设原坐标点为,坐标系中关于对称的问题分为三类:1.关于轴对称:横坐标值不变仍旧为,纵坐标值变为,即对称点为;2.关于轴对称:纵坐标值不变仍旧为,横坐标值变为即对称点为;3.关于原点对称:横纵坐标值都变为原值的相反数,即对称点为.熟练掌握变化规律是解题关键.2、C【解析】
函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.故选C考点:函数的定义3、A【解析】
直接利用二次根式的性质化简得出答案.【详解】解:原式==.故选:A.此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.4、A【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s=0.002<s=0.03,所以,甲比乙的产量稳定.故选A【点睛】本题考核知识点:方差.解题关键点:理解方差意义.5、B【解析】【分析】先求正方形的边长,可得圆的半径,再用正方形的面积减去圆的面积即可.【详解】因为6×6=36,所以正方形的边长是6厘米36-3.14×(6÷2)2=36-28.26=7.74(平方厘米)故选:B【点睛】本题考核知识点:正方形性质.解题关键点:理解正方形基本性质.6、C【解析】
根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°,又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故选:C.本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.7、A【解析】
由一元二次方程的解的定义,把x=-1代入已知方程,化简整理即可求得结果.【详解】解:∵x=-1是一元二次方程x2+px+q=0的一个根,∴(-1)2+p×(-1)+q=0,即∴p-q=1.故选A.本题考查了一元二次方程的解的定义,此类问题的一般思路:见解代入,整理化简.8、C【解析】
过点C作CE⊥y轴于点E,只要证明△CEA≌△AOB(AAS),即可解决问题;【详解】解:过点C作CE⊥y轴于点E.∵∠CEA=∠CAB=∠AOB=90°,∴∠EAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠EAC=∠ABO,∵AC=AB,∴△CEA≌△AOB(AAS),∴EA=OB=x,CE=OA=1,∵C的纵坐标为y,OE=OA+AD=1+x,∴y=x+1.故选:C.本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
先求出不等式的解集,然后根据解集求其非正整数解.【详解】解:∵,∴,∴正整数解是:1;故答案为:1.本题考查了一元一次不等式的解法,解不等式的步骤有:去分母、去括号、移项、合并同类项、系数化成1,注意,系数化为1时要考虑不等号的方向是否改变.10、1【解析】试题解析:由B点平移前后的纵坐标分别为2、4,可得B点向上平移了2个单位,由A点平移前后的横坐标分别是为1、3,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=2,b=2,故a-b=1.【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11、2cm≤h≤3cm【解析】
解:根据直角三角形的勾股定理可知筷子最长在水里面的长度为13cm,最短为12cm,则筷子露在外面部分的取值范围为:.故答案为:2cm≤h≤3cm本题主要考查的就是直角三角形的勾股定理的实际应用问题.在解决“竹竿过门”、立体图形中最大值的问题时,我们一般都会采用勾股定理来进行说明,从而得出答案.我们在解决在几何体中求最短距离的时候,我们一般也是将立体图形转化为平面图形,然后利用勾股定理来进行求解.12、【解析】
根据折叠的性质求出四边形BFDG是菱形,假设DF=BF=x,∴AF=AD﹣DF=8﹣x,根据在直角△ABF中,AB2+AF2=BF2,即可求解.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵折叠,∴∠DBC=∠DBF,故∠ADB=∠DBF∴DF=BF,∴四边形BFDG是菱形;∵AB=6,AD=8,∴BD=1.∴OB=BD=2.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,解得x=,即DG=BF=,故答案为:此题主要考查矩形的折叠性质,解题的关键是熟知菱形的判定与性质及勾股定理的应用.13、18【解析】
连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=36°,可得∠E度数.【详解】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=36°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=36°,∴∠E=18°.故答案为:18考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.三、解答题(本大题共5个小题,共48分)14、(1)1,0;(2)证明见解析.【解析】
(1)根据材料给出的信息,分别计算,即可得出答案;(2)设,,根据同底数幂的乘法法则即可得出答案.【详解】(1)∵,∴;∵,∴;(2)设,,则,,∴.∴,∴.本题考查了乘方的运算、幂的乘方以及同底数幂的乘法运算,解题的关键是理解题目中定义的运算法则.15、(1)证明见解析;(2)①菱形BFEP的边长为cm;②点E在边AD上移动的最大距离为2cm.【解析】
(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=4cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=4cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【详解】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=,∴菱形BFEP的边长为;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.16、(1)证明见解析;(2)见解析.【解析】
(1)根据“矩形的定义”证明结论;(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.【详解】(1)证明∵AC=9
AB=12
BC=15,∴AC2=81,AB2=144,BC2=225,∴AC2+AB2=BC2,∴∠A=90°.∵PG⊥AC,PH⊥AB,∴∠AGP=∠AHP=90°,∴四边形AGPH是矩形;(2)存在.理由如下:连结AP.∵四边形AGPH是矩形,∴GH=AP.∵当AP⊥BC时AP最短.∴9×12=15•AP.∴AP=.本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.17、(1)△BEC是直角三角形,理由见解析(2)四边形EFPH为矩形,理由见解析(3)【解析】(1)△BEC是直角三角形,理由略(2)四边形EFPH为矩形证明:在矩形ABCD中,∠ABC=∠BCD=900∴PA=,PD=2∵AD=BC=5∴AP2+PD2=25=AD2∴∠APD=900(3分)同理∠BEC=900∵DE=BP∴四边形BPDE为平行四边形∴BE∥PD(4分)∴∠EHP=∠APD=900,又∵∠BEC=900∴四边形EFPH为矩形(5分)(3)在RT△PCD中∠FfPD∴PD·CF=PC·CD∴CF==∴EF=CE-CF=-=(7分)∵PF==∴S四边形EFPH=EF·PF=(1)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;(2)根据矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH∥FP,EF∥HP,推出平行四边形EFPH,根据矩形的判定推出即可;(2)根据三角形的面积公式求出CF,求出EF,根据勾股定理求出PF,根据面积公式求出即可.18、(1)见解析;(2)3.【解析】
(1)根据题意只要证明EF为△ABC的中位线,即可证明DE=EF.(2)只要证明为直角三角形,根据勾股定理即可计算DF的长【详解】(1)证明:∵∠ADC=90°,E为AC的中点,∴DE=AE=AC.∵E、F分别为AC、BC的中点,∴EF为△ABC的中位线,∴EF=AB.∵AB=AC,∴DE=EF.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=∠BAD=30°.由(1)可知EF∥AB,AE=DE,∴∠FEC=∠BAC=30°,∠DEC=2∠DAC=60°,∴∠FED=90°.∵AC=6,∴DE=EF=3,∴DF==3.本题主要考查等腰三角形的性质,这是考试的重点知识,应当熟练掌握.一、填空题(本大题共5个小题,每小题4分,共20分)19、3.【解析】
运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.【详解】解:∵等腰直角三角形ABC,等腰直角三角形CDE∴∠ECD=45°,∠ACB=45°即AC⊥EC,且CE∥BF当AG⊥BF,时AG最小,所以由∵AF=AE∴AG=CG=AC=3故答案为3本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.20、80°【解析】
先由中位线定理推出,再由平行线的性质推出,然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF,最后由三角形内角和定理求出.【详解】∵点分别是的中点∴(中位线的性质)又∵∴(两直线平行,内错角相等)∵∴(两直线平行,同位角相等)又∵∴三角形是三角形∵是斜边上的中线∴∴(等边对等角)∴本题考查了中位线定理,平行线的性质,直角三角形斜边上的中线等于斜边的一半,和三角形内角和定理.熟记性质并准确识图是解题的关键.21、2【解析】
先将二次根式化为最简,然后合并同类二次根式即可.【详解】解:原式=.故答案为:2.本题考查了二次根式的加减运算,掌握二次根式的化简及同类二次根式的合并是关键.22、30°【解析】试题分析:根据旋转图形的性质可得:AB=AM,∠AMN=∠B=60°,∠ANM=∠C=30°,根据∠B=60°可得:△ABM为等边三角形,则∠NMC=60°,根据平行线的性质可得:∠1+∠ANM=∠NMC=60°,则∠1=60°-30°=30°.23、0.1【解析】
根据待定系数法确定函数关系式,进而解答即可.【详解】解:设当15≤t≤20时,s关于t的函数关系式为s=kt+b,把(15,2)(20,3.5)代入s=kt+b,可得:,解得:,所以当15≤t≤20时,s关于t的函数关系式为s=0.3t﹣2.5,把t=18代入s=0.3t﹣2.5中,可得:s=2.9,3.5﹣2.9=0.1,答:当t=18时,小明离家路程还有0.1千米.故答案为0.1.本题考查了一次函数的图象的性质的运用,行程问题的数量关系速度=路程÷时间的运用,解答时理解清楚函数图象的数据的含义是关键.二、解答题(本大题共3个小题,共30分)24、(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】
(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明△AMO≌△FOE.(2)(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国自动间歇式封口机数据监测研究报告
- 2024至2030年中国活性炭吸附设备行业投资前景及策略咨询研究报告
- 食品生产企业竞业限制协议书
- 网店经销合同范本
- 场地拍摄合同范本
- 2024至2030年启动蓄电池项目投资价值分析报告
- 采购木床合同范本
- 2024年连续性喷码墨水项目可行性研究报告
- 信用授权合同范本
- 地形测绘合同范本
- 佛七精进念佛容易着魔请看祖师开示及个人感悟
- 中小学教师信息技术培训
- 幼儿园中班科学活动教案《奇妙的感官》
- Yes-or-No-questions-一般疑问课件
- 环境保护相关知识培训专题培训课件
- 复变函数与积分变换全套课件
- 腹壁的解剖课件
- 儿科常用药物与急救药物-换算方法课件
- 压花制作(观赏植物学)课件
- 《夏商周考古》第5章西周文化(4-6节)
- 积累运用表示动作的词语课件
评论
0/150
提交评论