版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年山西省运城市芮城县数学九年级第一学期开学联考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状 B.调查你所在的班级同学的身高情况C.调查我市食品合格情况 D.调查九江市电视台《九江新闻》收视率2、(4分)下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.3、(4分)下列多项式中,能用完全平方公式分解因式的是()A. B. C. D.4、(4分)若等腰三角形的周长为60cm,底边长为xcm,一腰长为ycm,则y关于x的函数解析式及自变量x的取值范围是()A.y=60-2x(0<x<60) B.y=60-2x(0<x<30)C.y=(60-x)(0<x<60) D.y=(60-x)(0<x<30)5、(4分)如图,绕点逆时针旋转得到,若,,则的度数是()A. B.C. D.6、(4分)在中,,,高,则三角形的周长是()A.42 B.32 C.42或32 D.37或337、(4分)有19位同学参加歌咏比赛,所得的分数互不相同,所得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学得分的()A.平均数 B.中位数 C.众数 D.总分8、(4分)如图,与的形状相同,大小不同,是由的各顶点变化得到的,则各顶点变化情况是()A.横坐标和纵坐标都乘以2 B.横坐标和纵坐标都加2C.横坐标和纵坐标都除以2 D.横坐标和纵坐标都减2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=__.10、(4分)数据1,3,5,6,3,5,3的众数是______.11、(4分)已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.12、(4分)甲、乙二人在相同情况下,各射靶次,两人命中环数的方差分别是,,则射击成绩较稳定的是_________.(填“甲”或“乙")13、(4分)一次函数,若y随x的增大而增大,则的取值范围是.三、解答题(本大题共5个小题,共48分)14、(12分)某商品原来单价48元,厂家对该商品进行了两次降价,每次降低的百分数相同,现单价为27元,求平均每次降价的百分数.15、(8分)计算:(1)(2)(3)(4)16、(8分)如图,在平行四边形中,、的平分线分别与线段交于点,与交于点.(1)求证:,;(2)若,,,求和的长度.17、(10分)如图,在中,是边上的高,的平分线交于点,于点,请判断四边形的形状,并证明你的结论.18、(10分)如图,在中,点是的中点,点是线段的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.(1)求证:四边形是平行四边形.(2)若,,则在点的运动过程中:①当______时,四边形是矩形;②当______时,四边形是菱形.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=___.20、(4分)甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是_____(填“甲”或“乙”).21、(4分)若点、在双曲线上,则和的大小关系为______.22、(4分)如图,将5个边长都为4cm的正方形按如图所示的方法摆放,点A、B、C、D是正方形的中心,则正方形重叠的部分(阴影部分)面积和为_____.23、(4分)如图,四边形是矩形,是延长线上的一点,是上一点,;若,则=________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,中,延长到点,延长到点,使,连接、.求证:四边形是平行四边形.25、(10分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.结论1:△AB′C与▱ABCD重叠部分的图形是等腰三角形;结论2:B′D∥AC…(应用与探究)在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是正方形,求AC的长.(要求画出图形)26、(12分)已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形.(1)求证:四边形ADCE是平行四边形;(2)在△ABC中,若AC=BC,则四边形ADCE是;(只写结论,不需证明)(3)在(2)的条件下,当AC⊥BC时,求证:四边形ADCE是正方形.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
普查的调查结果比较准确,适用于精确度要求高的、范围较小的调查,抽样调查的调查结果比较近似,适用于具有破坏性的、范围较广的调查,由此即可判断.【详解】解:A选项全国中学生人数众多,调查范围广,适合抽样调查,故A不符合题意;B选项所在班级同学人数不多,身高要精确,适合普查,故B符合题意;C选项我市的食品数量众多,调查范围广,适合抽样调查,故C不符合题意;D选项调查收视率范围太广,适合抽样调查,故D不符合题意.故选:B.本题考查了抽样调查和普查,掌握抽样调查和普查各自的特点是进行灵活选用的关键.2、D【解析】
直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、既是中心对称图形也是轴对称图形,故此选项正确.
故选:D.此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.3、C【解析】
对下列各式进行因式分解,然后判断利用完全平方公式分解即可.【详解】解:A、,不能用完全平方公式分解因式,故A选项错误;B、,不能用完全平方公式分解因式,故B选项错误;C、,能用完全平方公式分解,故C选项正确;D、不能用完全平方公式分解因式,故D选项错误;故选:C.本题考查了因式分解,熟练掌握因式分解的公式法是解本题的关键.4、D【解析】∵2y+x=60,∴y=(60-x)(0<x<30).故选D.5、C【解析】
根据旋转的性质和三角形内角和180度求出<COD度数,再利用旋转角减去LCOD度数即可。【详解】解:根据旋转的性质可知:∠C=∠A=110°在△COD中,∠COD=180°-110°-40°=30°旋转角∠AOC=85°,所以∠α=85°-30°-55°故选:C.本题主要考查了旋转的性质,解题的关键是找准旋转角.6、C【解析】
在Rt△ABD中,利用勾股定理可求出BD的长度,在Rt△ACD中,利用勾股定理可求出CD的长度,由BC=BD+CD或BC=BD-CD可求出BC的长度,再将三角形三边长度相加即可得出△ABC的周长.【详解】在Rt△ABD中,,在Rt△ACD中,,∴BC=BD+CD=14或BC=BD-CD=4,
∴C△ABC=AB+BC+AC=15+14+13=42或C△ABC=AB+BC+AC=15+4+13=1.
故选:C.本题考查了勾股定理以及三角形的周长,利用勾股定理结合图形求出BC边的长度是解题的关键.在解本题时应分两种情况进行讨论,以防遗漏.7、B【解析】
因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.【详解】解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以,故选:B.本题考查了统计量的选择,掌握各个统计量的特点是解题关键.8、A【解析】
根据题意得:△OAB∽△OAB,然后由相似三角形的对应边成比例,求得答案.【详解】根据题意得:△OAB∽△OAB,∵O(0,0),A(2,1),B(1,3),B点的坐标为(2,6),A(4,2)∴横坐标和纵坐标都乘以2.故选A.此题考查坐标与图形性质,相似三角形的性质,解题关键在于利用相似三角形的对应边成比例二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
根据三角形的中位线定理得到PQ=BC,得到相似比为,再根据相似三角形面积之比等于相似比的平方,可得到结果.【详解】解:∵P,Q分别为AB,AC的中点,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四边形PBCQ=S△ABC﹣S△APQ=1,故答案为1.本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10、3【解析】
根据众数的定义:众数是指一组数据中出现次数最多的数据,利用众数的定义进行解答即可.【详解】因为数据1,3,5,6,3,5,3,中出现次数最多的数据是3,所以这组数据的众数是3,故答案为:3.本题主要考查众数的定义,解决本题的关键是要熟练掌握众数的定义.11、x1<x1【解析】
由k=-1-a1,可得y随着x的增大而减小,由于1>-1,所以x1<x1.【详解】∵y=(-1-a1)x+1,k=-1-a1<0,∴y随着x的增大而减小,∵1>-1,∴x1<x1.故答案为:x1<x1本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.12、乙【解析】
根据方差的意义解答即可.【详解】方差反映了数据的离散程度,方差越小,成绩越稳定,故射击成绩比较稳定的是乙.故答案为:乙.本题主要考查了方差的意义,清楚方差反映了数据的离散程度,方差越小,数据越稳定是解题的关键.13、.【解析】一次函数的图象有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数的值随x的值增大而减小.由题意得,函数的y随x的增大而增大,.三、解答题(本大题共5个小题,共48分)14、平均每次降价的百分数为25%.【解析】
设平均每次降价的百分率为x,那么这种药品经过一次降价后的价格为48(1-x)元,经过两次降价后的价格为48(1-x)元,而此时药品价格是27元,根据这个等量关系可以列出方程.【详解】设平均每次降价的百分数为x,依题意得:解得:答:平均每次降价的百分数为25%。此题考查一元二次方程的应用,解题关键在于根据题意列出方程.15、(1)5;(2)-5;(3);(4)【解析】
根据算术平方根的定义以及二次根式的性质,分别对(1)(2)(3)(4)进行化简计算即可.【详解】解:(1)(2)(3)(4)本题主要考查了算术平方根的定义,熟练掌握二次根式的性质是解答本题的关键.16、(1)证明见解析;(2)的长度为2,的长度为.【解析】
(1)由在平行四边形中,、的平分线分别与线段交于点,易求得,即可得,证得,易证得与是等腰三角形,即可得,,又由,即可证得;(2)由(1)易求得,,即可求得的长;过点作交的延长线于点,易证得四边形为平行四边形,即可得是直角三角形,然后利用勾股定理,即可求得的长.【详解】(1)证明:∵平分,∴.∵平分,∴.∵四边形平行四边形,∴,,,∴,∴.∴.∴;∵,∴,∴,∴,∵,∴,∴,∴,∵.∴;(2)解:∵,∴.∴,∵四边形平行四边形,∴.∴,∴,过点作交的延长线于点.∴.∵,∴四边形为平行四边形.∴,.∴,∴在中:.∴的长度为2,的长度为.故答案为:(1)证明见解析;(2)的长度为2,的长度为.本题考查平行四边形的判定与性质、等腰三角形的判定与性质、垂直的定义以及勾股定理等知识.此题综合性较强,难度较大,注意掌握数形结合思想的应用,注意掌握辅助线的作法.17、见解析【解析】
利用角平分线性质得到GE=CE,,从而得到,由两个垂直可得到,从而,即有,得到EC=CF,即有GE=CF,又,得到四边形是平行四边形,又EC=CF,即四边形为菱形【详解】证明:四边形是菱形是的平分线,四边形是平行四边形又平行四边形是菱形本题主要考查平行四边形的判定、菱形的判定、全等三角形的判定与性质等知识点,本题关键在于能够先判断出四边形是平行四边形18、(1)、证明过程见解析;(2)、①、2;②、1.【解析】
(1)、首先证明△BEF和△DCF全等,从而得出DC=BE,结合DC和AB平行得出平行四边形;(2)、①、根据矩形得出∠CEB=90°,结合∠ABC=120°得出∠CBE=60°,根据直角三角形的性质得出答案;②、根据菱形的性质以及∠ABC=120°得出△CBE是等边三角形,从而得出答案.【详解】(1)、证明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵点F是BC的中点,∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,FC=BF,∴△EBF≌△DCF(AAS),∴DC=BE,∴四边形BECD是平行四边形;(2)、①BE=2;∵当四边形BECD是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=BC=2,②BE=1,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,∴△CBE是等边三角形,∴BE=BC=1.本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型.理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.【解析】
作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【详解】解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=1,即NQ=1,∴MP+NP=QP+NP=QN=1,故答案为1本题考查轴对称-最短路线问题;菱形的性质.20、乙【解析】
根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】解:∵甲、乙的平均成绩都是9环,方差分别是S甲2=0.8,S乙2=0.35,∴S甲2>S乙2,∴成绩比较稳定的是乙;故答案为:乙.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.21、【解析】
根据反比例函数的增减性解答即可.【详解】将A(7,y1),B(5,y2)分别代入双曲线上,得y1=;y2=,则y1与y2的大小关系是.故答案为.此题考查反比例函数的性质,解题关键在于掌握其性质.22、16cm2【解析】
根据正方形的性质,每一个阴影部分的面积等于正方形的,再根据正方形的面积公式列式计算即可得解.【详解】解:∵点A、B、C、D分别是四个正方形的中心∴每一个阴影部分的面积等于正方形的∴正方形重叠的部分(阴影部分)面积和故答案为:本题考查了正方形的性质以及与面积有关的计算,不规则图形的面积可以看成规则图形面积的和或差,正确理解运用正方形的性质是解题的关键.23、【解析】分析:由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.详解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°.故答案为:23°.点睛:本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.二、解答题(本大题共3个小题,共30分)24、证明见解析【解析】
根据平行四边形性质得出AD//BC,AD=BC,求出AF=EC,AF//EC,得出四边形DEBF是平行四边形,根据平行四边形的性质推出即可【详解】证明:∵四边形是平行四边形,∴且,又∵,∴,,∴四边形是平行四边形.此题主要考查平行四边形的判定与性质,解题关键在于掌握平行四边形的性质及定理25、[发现与证明]:证明见解析;[应用与探究]:AC的长为或1.【解析】
[发现与证明]由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA=(180°-∠B′ED)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园游戏化学习评比活动方案
- 北师大版四年级上册数学第三单元 乘法 测试卷及答案【夺冠系列】
- 视力障碍预防与干预工作方案
- 餐饮行业食品安全保障方案
- 郑州大学《化工原理实验》2022-2023学年第一学期期末试卷
- 社区防台防汛应急预案
- 2024年度酒吧咖啡厅场地租赁合同
- 2024年度广告发布合同协议书范例(含媒介服务和效果评估)
- 04版建筑工程泵车使用合同
- 2024年度矿山开采权转让合同
- 2024-2025学年鲁教版(五四制)八年级数学上册期中测试题
- 高盛-比亚迪:全球汽车市场上的新兴领先企业-2024-10-企业研究
- DB2327T 097-2024 有机玉米生产技术规程
- 2025届高考英语大作文读后续写写作思路与技巧课件
- 书法鉴赏学习通超星期末考试答案章节答案2024年
- 四川省自贡市(2024年-2025年小学三年级语文)人教版期末考试(下学期)试卷(含答案)
- 2024年新北师大版七年级上册数学课件 第六章 6.3 第1课时 扇形统计图
- 第四单元测试卷(单元测试)-2024-2025学年六年级上册统编版语文
- 中国碳酸钙行业供需态势及发展潜力分析研究报告(2024-2030版)
- 2024-2025学年人教版七年级上册地理常考知识点
- 《我的白鸽》课件-2024-2025学年统编版语文七年级上册
评论
0/150
提交评论