2024-2025学年山西省朔州市朔城区第四中学数学九年级第一学期开学联考模拟试题【含答案】_第1页
2024-2025学年山西省朔州市朔城区第四中学数学九年级第一学期开学联考模拟试题【含答案】_第2页
2024-2025学年山西省朔州市朔城区第四中学数学九年级第一学期开学联考模拟试题【含答案】_第3页
2024-2025学年山西省朔州市朔城区第四中学数学九年级第一学期开学联考模拟试题【含答案】_第4页
2024-2025学年山西省朔州市朔城区第四中学数学九年级第一学期开学联考模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024-2025学年山西省朔州市朔城区第四中学数学九年级第一学期开学联考模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)小强同学投掷30次实心球的成绩如下表所示:由上表可知小强同学投掷30次实心球成绩的众数与中位数分别是()A.12m,11.9m B.12m,12.1m C.12.1m,11.9m D.12.1m,12m2、(4分)下列命题是真命题的是()A.相等的角是对顶角B.两直线被第三条直线所截,内错角相等C.若,则D.有一角对应相等的两个菱形相似3、(4分)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2,∠DAO=30°,则FC的长度为()A.1 B.2C. D.4、(4分)已知,则下列不等式成立的是()A. B. C. D.5、(4分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,36、(4分)4的平方根是()A.4 B.2 C.-2 D.±27、(4分)甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h8、(4分)若式子有意义,则x的取值范围是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)比较大小:_____.10、(4分)关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是________.11、(4分)分式当x__________时,分式的值为零.12、(4分)如图,在RtACB中,∠C=90°,AB=2,以点B为圆心,适当长为半径画弧,分别交边AB,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点P,作射线BP交AC于点D,若CD=1,则ABD的面积为_____.13、(4分)分解因式:1﹣x2=.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在中,,,,以线段为边向外作等边,点是线段的中点,连结并延长交线段于点.(1)求证:四边形为平行四边形;(2)求平行四边形的面积;(3)如图,分别作射线,,如图中的两个顶点,分别在射线,上滑动,在这个变化的过程中,求出线段的最大长度.15、(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点,网格中有以格点A、B、C为顶点的△ABC,请你根据所学的知识回答下列问题:(1)求△ABC的面积;(2)判断△ABC的形状,并说明理由.16、(8分)国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:运往地

车型

甲地(元/辆)

乙地(元/辆)

大货车

720

800

小货车

500

650

(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.17、(10分)甲、乙两位运动员在相同条件下各射靶10次,毎次射靶的成绩情况如图.(1)请填写下表:(2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:平均数方差中位数命中9环以上的次数(包括9环)甲71.21乙5.47.5(3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)18、(10分)已知:D,E分别为△ABC的边AB,AC的中点.求证:DE∥BC,且DE=BCB卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,是矩形的边上一点,以为折痕翻折,使得点的对应点落在矩形内部点处,连接,若,,当是以为底的等腰三角形时,___________.20、(4分)把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.21、(4分)如图,∠MON=∠ACB=90°,AC=BC,AB=5,△ABC顶点A、C分别在ON、OM上,点D是AB边上的中点,当点A在边ON上运动时,点C随之在边OM上运动,则OD的最大值为_____.22、(4分)如图,在正方形ABCD中,E是CD边上的点,过点E作EF⊥BD于F,若EF=EC,则∠BCF的度数为______.23、(4分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.二、解答题(本大题共3个小题,共30分)24、(8分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?25、(10分)在矩形ABCD中,AB=8,BC=6,点E是AB边上一点,连接CE,把△BCE沿CE折叠,使点B落在点B′处.(1)当B′在边CD上时,如图①所示,求证:四边形BCB′E是正方形;(2)当B′在对角线AC上时,如图②所示,求BE的长.26、(12分)如图,在菱形中,是的中点,且,;求:(1)的大小;(2)菱形的面积.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据众数和中位数的定义分别进行判断即得答案.【详解】解:由表可知:12.1出现了10次,出现的次数最多,所以小强同学投掷30次实心球成绩的众数是12.1m,把这些数从小到大排列,最中间的第15、16个数是12、12,则中位数是12+122=12(m本题考查众数和中位数的概念,众数是指一组数据中出现次数最多的数据,而中位数是指将一组数据按从小(大)到大(小)的顺序排列起来,位于最中间的数(或最中间两个数的平均数).具体判断时,切勿将表中的“成绩”与“频数”混淆,从而做出错误判断.2、D【解析】

A错误,对顶角相等,但相等的角不一定是对顶角.B错误,两直线平行时,内错角相等.C错误,当m和n互为相反数时,,但m≠n.故选D3、A【解析】

由矩形的性质可得OA=OB=OC=OD=AC=,∠ABC=90°,即可得∠ADO=∠DAO=∠OBC=∠ACB=30°,在Rt△ABC中求得BC=3;在Rt△BOF中,求得BF=2,所以CF=BC-BF=1.【详解】∵四边形ABCD是矩形,AC=2,∴OA=OB=OC=OD=AC=,∠ABC=90°,∴∠ADO=∠DAO=∠OBC=∠ACB=30°,在Rt△ABC中,AC=2,∠ACB=30°,∴BC=3;∵EF⊥BD,∴∠BOF=90°,在Rt△BOF中,OB=,∠OBC=30°,∴BF=2,∴CF=BC-BF=1,故选A.本题考查了矩形的性质及解直角三角形,正确求得BC=3、BF=2是解决问题的关键.4、C【解析】

根据不等式的性质逐个判断即可.【详解】解:A、∵x>y,∴2x>2y,故本选项不符合题意;B、∵x>y,∴x−6>y−6,故本选项不符合题意;C、∵x>y,∴x+5>y+5,故本选项符合题意;D、∵x>y,∴−3x<−3y,故本选项不符合题意;故选:C.本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:不等式的性质1是:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,不等式的性质2是:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,不等式的性质3是:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.5、B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.6、D【解析】∵,∴4的平方根是,故选D.7、C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.8、C【解析】

根据二次根式的被开方数是非负数列出不等式x-1≥0,通过解该不等式即可求得x的取值范围.【详解】解:根据题意,得x-1≥0,

解得,x≥1.

故选:C.此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.二、填空题(本大题共5个小题,每小题4分,共20分)9、<【解析】

先算−、-的倒数值,再比较−、-的值,判断即可.【详解】∵,,∵+2>+2,∴-<-,故答案为<.本题考查了实数大小比较法则,任意两个实数都可以比较大小.根据两正数比较倒数大的反而小得出是解题关键.10、【解析】

解:设方程的另一个根为n,则有−2+n=−5,解得:n=−3.故答案为本题考查一元二次方程的两根是,则11、=-3【解析】

根据分子为0,分母不为0时分式的值为0来解答.【详解】根据题意得:且x-30解得:x=-3故答案为:=-3.本题考查的是分式值为0的条件,易错点是只考虑了分子为0而没有考虑同时分母应不为0.12、【解析】

过点D作DH⊥AB于H.利用角平分线的性质定理求出DH,然后根据三角形的面积公式即可解决问题.【详解】解:如图,过点D作DH⊥AB于H.∵DC⊥BC,DH⊥AB,BD平分∠ABC,∴DH=CD=1,∴S△ABD=•AB•DH=×2×1=,故答案为:.本题主要考查角平分线的尺规作图及性质,掌握角平分线的性质是解题的关键.13、(1+x)(1﹣x).【解析】试题分析:直接应用平方差公式即可:1﹣x2=(1+x)(1﹣x).三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2);(3).【解析】

(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形;(2)在Rt△ABC中,求出BC,AC即可解决问题;(3)取的中点,连结,,,根据三角形三边关系进行求解即可得.【详解】(1)在中,,,,在等边中,,,为的中点,,又,,在中,,为的中点,,,,,,又,,又,,,又,,即,四边形是平行四边形;(2)在中,,,,∴,;(3)取的中点,连结,,,的最大长度.本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题.15、(1)△ABC的面积为5;(2)△ABC是直角三角形,见解析.【解析】

(1)三角形ABC面积由长方形面积减去三个直角三角形面积,求出即可;(2)利用勾股定理表示出AB2=5,BC2=25,AC2=20,再利用勾股定理的逆定理得到三角形为直角三角形.【详解】(1)S△ABC=4×4-×1×2-×4×3-×2×4=16-1-6-4=5;(2)△ABC是直角三角形,理由:∵正方形小方格边长为1

∴AB2=12+22=5,

AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,

∴△ABC是直角三角形.本题考查了勾股定理,勾股定理的逆定理,以及三角形面积,熟练掌握勾股定理是解本题的关键.16、(1)大货车用8辆,小货车用1辆(2)w=70a+11220(0≤a≤8且为整数)(3)使总运费最少的调配方案是:2辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为3元【解析】

(1)设大货车用x辆,则小货车用18-x辆,根据运输228吨物资,列方程求解.(2)设前往甲地的大货车为a辆,则前往乙地的大货车为(8-a)辆,前往甲地的小货车为(9-a)辆,前往乙地的小货车为辆,根据表格所给运费,求出w与a的函数关系式.(3)结合已知条件,求a的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】解:(1)设大货车用x辆,则小货车用(18-x)辆,根据题意得16x+1(18-x)=228,解得x=8,∴18-x=18-8=1.答:大货车用8辆,小货车用1辆.(2)w=720a+800(8-a)+200(9-a)+620=70a+11220,∴w=70a+11220(0≤a≤8且为整数).(3)由16a+1(9-a)≥120,解得a≥2.又∵0≤a≤8,∴2≤a≤8且为整数.∵w=70a+11220,k=70>0,w随a的增大而增大,∴当a=2时,w最小,最小值为W=70×2+11220=3.答:使总运费最少的调配方案是:2辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为3元.17、(1)见解析;(2)甲的成绩比乙稳定;(1)见解析【解析】

(1)根据中位数、平均数的概念计算;

(2)从平均数和方差相结合看,方差越小的越成绩越好;

(1)根据题意,从平均数,中位数两方面分析即可.【详解】解:(1):(1)通过折线图可知:

甲的环数按从小到大排列是5、6、6、7、7、7、7、8、8、9,

则数据的中位数是(7+7)÷2=7;

的平均数=(2+4+6+7+8+7+8+9+9+10)=7;

乙命中9环以上的次数(包括9环)为1.

填表如下:平均数方差中位数命中9环以上的次数(包括9环)甲71.271乙75.47.51(2)因为平均数相同,所以甲的成绩比乙稳定.(1)理由1:因为平均数相同,命中9环以上的次数甲比乙少,所以乙的成绩比甲好些;理由2:因为平均数相同,甲的中位数小于乙的中位数,所以乙的成绩比甲好些;理由1:甲的成绩在平均数上下波动;而乙处于上升势头,从第4次以后就没有比甲少的情况发生,乙较有潜力.本题考查了折线统计图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.也考查了中位数、平均数和方差的概念.在实际生活中常常用它们分析问题.18、证明见解析【解析】

延长DE至F,使EF=DE,连接CF,通过证明△ADE≌△CFE和证明四边形BCFD是平行四边形即可证明三角形的中位线平行于三角形的第三边并且等于第三边的一半.【详解】证明:延长DE到F,使EF=DE.连接CF.在△ADE和△CFE中,∵AE=CE,∠AED=∠CEF,DE=FE,∴△ADE≌△CFE.∴AD=CF,∠A=∠ECF∴AD∥CF,即BD∥CF.又∵BD=AD=CF,∴四边形DBCF是平行四边形.∴DE∥BC,且DF=BC.∴DE=DF=BC.本题考查三角形的中位线定理的证明,解题关键是掌握等三角形的判定和全等三角形的性质以及平行四边形的判定和性质.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

过点B'作B'F⊥AD,延长FB'交BC与点G,可证四边形ABGF是矩形,AF=BG=4,∠BGF=90°,由勾股定理可求B'F=3,可得B'G=2,由勾股定理可求BE的长.【详解】解:如图,过点B'作B'F⊥AD,延长FB'交BC与点G,∵四边形ABCD是矩形∴AD=BC=8,∠DAB=∠ABC=90°∵AB'=B'D,B'F⊥AD∴AF=FD=4,∵∠DAB=∠ABC=90°,B'F⊥AD∴四边形ABGF是矩形∴AF=BG=4,∠BGF=90°∵将△ABE以AE为折痕翻折,∴BE=B'E,AB=AB'=5在Rt△AB'F中,∴B'G=2在Rt△B'EG中,B'E2=EG2+B'G2,∴BE2=(4-BE)2+4∴BE=故答案为:.本题考查了翻折变换,矩形的判定与性质,等腰三角形的性质,勾股定理,求B'G的长是本题的关键.20、y=﹣2x+1【解析】

直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+1.故答案为:y=﹣2x+1.本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.21、.【解析】

如图,取AC的中点E,连接OE、DE、OD,由OD≤OE+DE,可得当O、D、E三点共线时,点D到点O的距离最大,再根据已知条件,结合三角形的中位线定理及直角三角形斜边中线的性质即可求得OD的最大值.【详解】如图,取AC的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,∵∠ACB=90°,AC=BC,AB=5,∴AC=BC=∵点E为AC的中点,点D为AB的中点,∴DE为△ABC的中位线,∴DE=BC=;在Rt△ABC中,点E为AC的中点,∴OE=AC=;∴OD的最大值为:OD+OE=.故答案为:.本题考查了直角三角形斜边上的中线等于斜边的一半的性质、三角形的中位线定理及勾股定理等知识点,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.22、67.5【解析】

由正方形的性质得到∠BDC=∠CBD=45°,求得DF=EF,∠FED=45°.根据等腰三角形的性质得到∠EFC=∠ECF,于是得到结论.【详解】解:∵四边形ABCD是正方形,

∴∠BDC=∠CBD=45°,

∵EF⊥BD,

∴△DFE是等腰直角三角形,

∴DF=EF,∠FED=45°,

∵EF=EC,

∴∠EFC=∠ECF,

∵∠FED=∠EFC+∠ECF,

∴∠ECF=22.5°,

∵∠BCD=90°,

∴∠BCF=67.5°,

故答案为:67.5°.本题考查了正方形的性质,等腰直角三角形的判定和性质,等腰三角形的性质,正确的识别图形是解题的关键.23、【解析】

根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度【详解】∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm.故答案为:cm.此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.二、解答题(本大题共3个小题,共30分)24、(1)y=﹣96x+192(0≤x≤2);(2)下午4时.【解析】试题分析:(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论