复变函数与积分变换第八章教案_第1页
复变函数与积分变换第八章教案_第2页
复变函数与积分变换第八章教案_第3页
复变函数与积分变换第八章教案_第4页
复变函数与积分变换第八章教案_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教案教案复变函数教案周次课题课时课型教具24.1傅里叶变换2新授教材教学目的1、理解傅里叶变换的概念2、掌握复数的代数运算教学重点复数的代数运算教学方法例证法、启发诱导法、讲授法教学过程一、引入傅立叶变换是数字信号处理领域一种很重要的算法。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。2‘二、讲授新课1、傅里叶级数如果我们将基本三角函数中的函数,任意取n个组合,则我们可以得到一个较复杂的函数。例如图1(a)是两个函数的组合;图1(b)是三个函数的组合。如果我们取更多的函数组合,甚至全体的组合,将会得到更复杂的函数或我们期望的函数。现在我们讨论上述问题的逆问题。即如果给定一个周期为的任意周期函数我们能否将它表示成简单的三角函数(有限个或无限个)之和呢?即能否将分解成如下形式:其中如果能实现这种分解,那么对许多复杂的函数就可以通过简单的三角函数来研究其性质了。上述问题的回答是肯定的,由于正弦函数与余弦函数可以统一地由指数函数表示出来,因此我们可以得到另外一种更为简洁的形式=1\*GB3①称为傅里叶级数的指数形式。傅里叶级数有着非常明确的物理含义。在傅里叶级数的三角形式中,基频为,频率为基频的倍数。称为相位。在傅里叶级数的指数形式中,为周期函数的离散频谱,为离散振幅谱,为离散相位谱。为了进一步明确与频率的对应关系,常常记例1求以T为周期的函数的离散频谱和它的傅里叶级数的复指数形式。振幅谱为相位谱为2、博氏积分与博氏变换(1)通过前面的讨论,我们知道了一个周期函数可以展开为傅里叶级数,那么,对非周期函数是否同样适合?令时,由周期函数的傅里叶级数来推倒非周期函数的傅里叶积分公式。即,在按照积分定义,在一定条件下,可整理成=2\*GB3②则=2\*GB3②式为傅里叶积分公式,简称博氏积分。(2)傅氏变换与傅氏积分从=2\*GB3②式出发,令=3\*GB3③则有=4\*GB3④其中=3\*GB3③式为傅里叶变换(简称傅氏变换),函数称为的像函数,记为;称=4\*GB3④为傅里叶逆函数(简称傅氏逆变换)即傅氏积分,其中,函数称为的像原函数,记为。与傅氏级数一样,傅氏变换也有明确的物理含义。为频谱密度函数(简称频谱或者连续频谱),称为振幅,为相位谱。由于傅氏变换这种特殊的物理含义,因而在工程实际中得到广泛的应用。例2求矩阵脉冲函数的傅氏变换以及傅氏积分表达式振幅谱为相位谱为再根据=4\*GB3④可得到傅氏逆变换,即的傅氏积分表达式为已知的频谱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论