版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024-2025学年山东滨州无棣县九年级数学第一学期开学预测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°2、(4分)介于两个相邻整数之间,这两个整数是()A.2和3 B.3和4 C.4和5 D.5和63、(4分)已知一组数据共有个数,前面个数的平均数是,后面个数的平均数是,则这个数的平均数是()A. B. C. D.4、(4分)已知点(-4,y1),(2,y2)都在直线y=-3x+2上,则y1,y2的大小关系是A.y1>y2 B.y1=y2 C.y1<y2 D.不能比较5、(4分)下列因式分解错误的是()A.2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1) B.x2+2x+1=(x+1)2C.x2y﹣xy2=xy(x﹣y) D.x2﹣y2=(x+y)(x﹣y)6、(4分)如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A.16 B.14 C.26 D.247、(4分)某人出去散步,从家里出发,走了20min,到达一个离家900m的阅报亭,看了10min报纸后,用了15min返回家里,下面图象中正确表示此人离家的距离y(m)与时间x(min)之家关系的是()A. B.C. D.8、(4分)如图所示,在平面直角坐标系中,的顶点坐标是,顶点坐标是、则顶点的坐标是()A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图所示,在中,,在同一平面内,将绕点逆时针旋转到△的位置,使,则___.10、(4分)在一次身体的体检中,小红、小强、小林三人的平均体重为42kg,小红、小强的平均体重比小林的体重多6kg,小林的体重是___kg.11、(4分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为_____.12、(4分)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为_______.13、(4分)如图,Rt△ABC中,∠C=90°,AC=3,BC=1.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S1.则S1﹣S2+S3+S1等于_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.(1)求证:四边形PMAN是正方形;(2)求证:EM=BN;(3)若点P在线段AC上移动,其他不变,设PC=x,AE=y,求y关于x的解析式.15、(8分)某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.(1)求一件A种文具的价格;(2)根据需要,该校准备在该商店购买A、B两种文具共150件.①求购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式;②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?16、(8分)(1)如图1,将矩形折叠,使落在对角线上,折痕为,点落在点处,若,则º;(2)小丽手中有一张矩形纸片,,.她准备按如下两种方式进行折叠:①如图2,点在这张矩形纸片的边上,将纸片折叠,使点落在边上的点处,折痕为,若,求的长;②如图3,点在这张矩形纸片的边上,将纸片折叠,使落在射线上,折痕为,点,分别落在,处,若,求的长.17、(10分)如图,P、Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(顶点都在格点上的四边形称为格点四边形)(1)在图①中画出一个面积最小的中心对称图形PAQB,(2)在图②中画出一个四边形PCQD,使其是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.18、(10分)如图,已知是线段的中点,,且,试说明的理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为______.20、(4分)若ab<0,化简的结果是____.21、(4分)小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是______人.22、(4分)已知方程,如果设,那么原方程可以变形成关于的方程为__________.23、(4分)如图,在矩形ABCD中,AC为对角线,点E为BC上一点,连接AE,若∠CAD=2∠BAE,CD=CE=9,则AE的长为_____________.二、解答题(本大题共3个小题,共30分)24、(8分)如图为一个巨型广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求广告牌支架的示意图ΔABC的周长.25、(10分)为了让同学们了解自己的体育水平,八年级班的体育老师对全班名学生进行了一次体育模拟测试(得分均为整数),成绩满分为分,班的体育委员根据这次测试成绩,制作了统计图和分析表如下:八年级班全体女生体育测试成绩分布扇形统计图八年级全体男生体育测试成绩条形统计图八年级班体育模拟测试成绩分析表根据以上信息,解答下列问题:(1)这个班共有男生人,共有女生人;(2)补全八年级班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,班的男生队,女生队哪个表现更突出一些?并写出你的看法的理由.26、(12分)在平行四边形ABCD中E是BC边上一点,且AB=AE,AE,DC的延长线相交于点F.(1)若∠F=62°,求∠D的度数;(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.【详解】∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.2、B【解析】
根据无理数的估算得出的大小范围,即可得答案.【详解】∵9<15<16,∴3<<4,故选B.本题考查的是估算无理数的大小,根据题意估算出的大小范围是解答此题的关键.3、C【解析】
由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..4、A【解析】
先求出y1,y1的值,再比较其大小即可.【详解】解:∵点(-4,y1),(1,y1)都在直线y=−3x+1上,∴y1=11+1=14,y1=−6+1=−4,∴y1>y1.故选:A.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5、A【解析】
A、原式=(x﹣2)(2x﹣1),错误;B、原式=(x+1)2,正确;C、原式=xy(x﹣y),正确;D、原式=(x+y)(x﹣y),正确,故选A.6、C【解析】
由AD//BC可知∠ADE=∠DEC,根据∠ADE=∠EDC得∠DEC=∠EDC,所以DC=EC=5,根据AB=CD,AD=BC即可求出周长.【详解】∵AD//BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠EDC,∴CE=CD=8-3=5,∴▱ABCD的周长是(8+5)2=26,故选C.本题考查平行四边形性质,熟练掌握平行四边形的性质是解题关键.7、D【解析】试题分析:由于某人出去散步,从家走了20分钟,到一个离家900米的阅报亭,并且看报纸10分钟,这是时间在加长,而离家的距离不变,再按原路返回用时15分钟,离家的距离越来越短,由此即可确定表示张大伯离家时间与距离之间的关系的函数图象.解:依题意,0~20min散步,离家路程从0增加到900m,20~30min看报,离家路程不变,30~45min返回家,离家从900m路程减少为0m,且去时的速度小于返回的速度,故选D.【点评】此题主要考查了函数图象,利用图象信息隐含的数量关系确定所需要的函数图象是解答此题的关键.8、A【解析】
此题可过P作PE⊥OM,过点N作NF⊥OM,根据勾股定理求出OP的长度,则N点坐标便不难求出.【详解】过P作PE⊥OM,过点N作NF⊥OM,∵顶点P的坐标是(3,4),∴OE=3,PE=4,∵四边形ABCD是平行四边形,∴OE=MF=3,∵4+3=7,∴点N的坐标为(7,4).故选A.此题考查平行四边形的性质,坐标与图形性质,解题关键在于作辅助线.二、填空题(本大题共5个小题,每小题4分,共20分)9、40°【解析】
由旋转性质可知,,从而可得出为等腰三角形,且和已知,得出的度数.则可得出答案.【详解】解:绕点逆时针旋转到△的位置本题考查了旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解题的关键是抓住旋转变换过程中不变量,判断出是等腰三角形.10、1.【解析】
可设小林的体重是xkg,根据平均数公式列出方程计算即可求解.【详解】解:设小林的体重是xkg,依题意有
x+2(x+6)=42×3,
解得x=1.
故小林的体重是1kg.
故答案为:1.考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.11、【解析】
作AM⊥BC于E,由角平分线的性质得出,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出,NE=x,BE=BN+EN=x,CE=CN−EN=x,再由勾股定理得出方程,解方程即可得出结果.【详解】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴,∴NE=x,∴BE=BN+EN=x,CE=CN−EN=x,由勾股定理得:AE2=AB2−BE2=AC2−CE2,即52−(x)2=(2x)2−(x)2,解得:x=,∴AC=2x=;故答案为.本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.12、1【解析】
根据勾股定理的几何意义:得到S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,求解即可.【详解】由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C.∵正方形B,C,D的面积依次为4,3,9,∴S正方形A+4=9﹣3,∴S正方形A=1.故答案为1.本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.13、2【解析】
过F作AM的垂线交AM于D,通过证明S2=SRt△ABC;S3=SRt△AQF=SRt△ABC;S1=SRt△ABC,进而即可求解.【详解】解:过F作AM的垂线交AM于D,可证明Rt△ADF≌Rt△ABC,Rt△DFK≌Rt△CAT,所以S2=SRt△ABC.由Rt△DFK≌Rt△CAT可进一步证得:Rt△FPT≌Rt△EMK,∴S3=S△FPT,又可证得Rt△AQF≌Rt△ACB,∴S1+S3=SRt△AQF=SRt△ABC.易证Rt△ABC≌Rt△EBN,∴S1=SRt△ABC,∴S1﹣S2+S3+S1=(S1+S3)﹣S2+S1=SRt△ABC﹣SRt△ABC+SRt△ABC=2﹣2+2=2,故答案是:2.本题考查正方形的性质及三角形全等的判定与性质,根据已知条件证得S2=SRt△ABC,S3=SRt△AQF=SRt△ABC,S1=SRt△ABC是解决问题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析;(3)y=﹣x+1.【解析】
(1)由四边形ABCD是正方形,易得∠BAD=90°,AC平分∠BAD,又由PM⊥AD,PN⊥AB,即可证得四边形PMAN是正方形;(2)由四边形PMAN是正方形,易证得△EPM≌△BPN,即可证得:EM=BN;(3)首先过P作PF⊥BC于F,易得△PCF是等腰直角三角形,继而证得△APM是等腰直角三角形,可得AP=AM=(AE+EM),即可得方程﹣x=(y+x),继而求得答案.【详解】(1)∵四边形ABCD是正方形,∴AC平分∠BAD,∵PM⊥AD,PN⊥AB,∴PM=PN,又∵∠BAD=90°,∠PMA=∠PNA=90°,∴四边形PMAN是矩形,∴四边形PMAN是正方形;(2)∵四边形PMAN是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,,∴△EPM≌△BPN(ASA),∴EM=BN;(3)过P作PF⊥BC于F,如图所示:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=1,∠PCF=45°,∴AC==,△PCF是等腰直角三角形,∴AP=AC﹣PC=﹣x,BN=PF=x,∴EM=BN=x,∵∠PAM=45°,∠PMA=90°,∴△APM是等腰直角三角形,∴AP=AM=(AE+EM),即﹣x=(y+x),解得:y=﹣x+1.本题是四边形的综合题.考查了正方形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的判定与性质.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.15、(1)一件A种文具的价格为15元;(2)①W=-5a+3000;②有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.【解析】
(1)根据题意可以得到相应的分式方程,从而可以求得一件A种文具的价格;(2)①根据题意,可以直接写出W与a之间的函数关系式;②根据题意可以求得a的取值范围,再根据W与a的函数关系式,可以得到W的最小值,本题得以解决.【详解】(1)设一件A种文具的价格为x元,则一件B种玩具的价格为(x+5)元,解得,x=15,经检验,x=15是原分式方程的解,答:一件A种文具的价格为15元;(2)①由题意可得,W=15a+(15+5)(150-a)=-5a+3000,即购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式是W=-5a+3000;②∵购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,∴,解得,50≤a≤100,∵a为整数,∴共有51种购买方案,∵W=-5a+3000,∴当a=100时,W取得最小值,此时W=2500,150-a=100,答:有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质、不等式的性质和分式方程的知识解答,注意分式方程要检验.16、(1)12;(2)①AG=;②【解析】
(1)由折叠的性质可得∠BAE=∠CAE=12°;(2)①过点F作FH⊥AB于H,可证四边形DFHA是矩形,可得AD=FH=4,由勾股定理可求D1H=1,由勾股定理可求AG的长;②首先证明CK=CH,利用勾股定理求出BH,可得AH,再利用翻折不变性,可知AH=A1H,由此即可解决问题.【详解】解:(1)∵∠DAC=66°,∴∠CAB=24°∵将矩形ABCD折叠,使AB落在对角线AC上,∴∠BAE=∠CAE=12°故答案为:12;(2)如图2,过点F作FH⊥AB于H,∵∠D=∠A=90°,FH⊥AB∴四边形DFHA是矩形∴AD=FH=4,∵将纸片ABCD折叠∴DF=D1F=5,DG=D1G,∴D1H=,∴AD1=2∵AG2+D1A2=D1G2,∴AG2+4=(4−AG)2,∴AG=;②∵DK=,CD=9,∴CK=9−=,∵四边形ABCD是矩形,∴DC∥AB,∴∠CKH=∠AHK,由翻折不变性可知,∠AHK=∠CHK,∴∠CKH=∠CHK,∴CK=CH=,∵CB=AD=4,∠B=90°,∴在Rt△CDF中,BH=,∴AH=AB−BH=,由翻折不变性可知,AH=A1H=,∴A1C=CH−A1H=1.本题考查四边形综合题、矩形的性质、翻折变换、勾股定理,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题,属于中考压轴题.17、(1)画图见解析;(2)画图见解析.【解析】
(1)利用方格纸的特点及几何图形的计算方法,利用割补法,把四边形PAQB的面积转化为△PAQ与△PBQ的面积之和,根据两个三角形的底PQ一定时,要使面积最小,则满足高最小,且同时满足顶点都在格点上即可得答案;(2)根据题意,画出的四边形是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到可知此四边形是等腰梯形,根据方格纸的特点,作出满足条件的图形即可.【详解】(1)∵PQ为对角线,∴S四边形PAQB=S△PAQ+S△PBQ,∵PQ一定时,高最小时,△PAQ与△PBQ的面积最小,A、B在格点上,∴高为1,∴四边形PAQB如图①所示:(2)∵四边形PCQD是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到,∴四边形PCQD是等腰梯形,∴四边形PCQD如图②所示:本题考查了作图——旋转变化及利用割补法计算几何图形的面积,熟练掌握旋转的性质及方格纸的特点是解题关键.18、见解析【解析】
根据中点定义求出AC=CB,两直线平行,同位角相等,求出∠ACD=∠B,然后证明△ACD和△CBE全等,再利用全等三角形的对应角相等进行解答.【详解】解:∵C是AB的中点,
∴AC=CB(线段中点的定义).)
∵CD∥BE(已知),
∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,∴△ACD≌△CBE(SAS).
∴∠D=∠E(全等三角形的对应角相等).本题主要考查了全等三角形的判定与全等三角形的性质,确定用SAS定理进行证明是关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.【解析】解:依题意知,BG=AF=DE=8,EF=FG=2,∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===1.故答案为1.点睛:此题考查勾股定理的证明,解题的关键是得到直角△ABF的两直角边的长度.20、【解析】的被开方数a2b>1,而a2>1,所以b>1.又因为ab<1,所以a、b异号,所以a<1,所以.21、1【解析】
将这7个数按大小顺序排列,找到最中间的数即为中位数.【详解】解:这组数据从大到小为:27,1,1,1,42,42,46,故这组数据的中位数1.故答案为1.此题考查了折线统计图及中位数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算,难度一般.22、(或)【解析】
观察方程的两个分式具备的关系,如果设,则原方程另一个分式为可用换元法转化为关于y的分式方程.去分母即可.【详解】∵=∴把代入原方程得:,方程两边同乘以y整理得:.此题考查换元法解分式方程,解题关键在利用换元法转化即可.23、【解析】
如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,证明△ABE∽△ADM,根据相似三角形的性质可得AB:AD=BE:DM,证明△ADM≌△ANM,根据全等三角形的性质可得AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC=9+m,MN=n,CM=9-n,由此可得,即9n=m(9+m),根据勾股定理可得AC=,从而可得CN=-(9+m),在Rt△CMN中,根据勾股定理则可得(9-n)2=n2+[-(9+m)]2,继而由9n=m(9+m),可得-2m(9+m)=2(9+m)2-2(9+m),化简得=9+2m,两边同时平方后整理得m2+6m-27=0,求得m=3或m=-9(舍去),再根据勾股定理即可求得答案.【详解】如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,则∠CAD=2∠DAM=2∠NAM,∠ANM=∠MNC=90°,∵∠CAD=2∠BAE,∴∠BAE=∠DAM,∵四边形ABCD是矩形,∴AB=CD=9,∠B=∠D=90°,AD=BC,∴△ABE∽△ADM,∴AB:AD=BE:DM,又∵AM=AM,∴△ADM≌△ANM,∴AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC=CE+BE=9+m,MN=n,CM=CD-DM=9-n,∵AB:AD=BE:DM,∴,即9n=m(9+m),∵∠B=90°,∴AC=,∴CN=AC-AN=-(9+m),在Rt△CMN中,CM2=CN2+MN2,即(9-n)2=n2+[-(9+m)]2,∴81-18n+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,又∵9n=m(9+m),∴81-2m(9+m)+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,即-2m(9+m)=2(9+m)2-2(9+m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中领导听评课记录
- 始兴县2024年一级造价工程师《土建计量》模拟试题含解析
- 萍乡市安源区2024年一级造价工程师《土建计量》统考试题含解析
- 河南省郑州市外国语中学2024-2025学年九年级上学期12月月考道德与法治试题(含答案)
- 【课件】固定资产投资统计制度培训
- 历史规律与社会进步模板
- 大庆景园中学《整式的除法》课件
- 蓝色商务风汽车行业商业计划书模板
- 《火用分析基础》课件
- 《文献检索新思维》课件
- 陈声宗 化工设计-第八章-2013
- GB/T 43153-2023居家养老上门服务基本规范
- 《世界遗产背景下的影响评估指南和工具包》
- 5G-无线网络规划概述课件
- ICT基本原理-课件
- 电网检修工程预算定额
- 六年级上册英语说课稿-Unit6 There are four seasons in a year Lesson 35-36|人教(精通)
- 大学生心理健康与发展学习通课后章节答案期末考试题库2023年
- 大班语言故事吉吉和磨磨
- 【2022年】山东省临沂市特种设备作业烟花爆竹从业人员模拟考试(含答案)
- 工程窝工、中途停工及停建结算索赔处理方案
评论
0/150
提交评论