数轴上的九类动态模型解读与提分精练(学生版)_第1页
数轴上的九类动态模型解读与提分精练(学生版)_第2页
数轴上的九类动态模型解读与提分精练(学生版)_第3页
数轴上的九类动态模型解读与提分精练(学生版)_第4页
数轴上的九类动态模型解读与提分精练(学生版)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数轴上的九类动态模型数轴中的动态问题属于七年级上册必考压轴题型,主要以数轴为载体,体现分类讨论和数形结合等思想,考查学生的分析与综合能力。解题时,一般遵循“点、线、式”三步策略。即:先根据题意中动点的出发位置,移动方向和速度,用含t的式子表示动点,然后根据题中要求提炼出线段,用动点的含t表达式表示线段,最后根据线段间的等量关系,列出式子,然后求解(要检验解是否符合动点的运动时间范围)。TOC\o"1-4"\h\z\u模型1.动态规律(左右跳跃)模型 2模型2.单(多)动点匀速模型 5模型3.单(多)动点变速模型 9模型4.动点往返运动模型 13模型5.动态中点与n等分点模型 17模型6.动态定值(无参型)模型 21模型7.动态定值(含参型)模型 24模型8.数轴折叠(翻折)模型 27模型9.数轴上的线段移动模型 31 35【知识储备】①若A、B两点在数轴上对应的数字是a、b,则AB两点间的距离;AB的中点对应的数字是:。②数轴动点问题主要步骤:1)画图——在数轴上表示出点的运动情况:运动方向和速度;2)写点——写出所有点表示的数:常用含t的代数式表示,向右运动用“+”表示,向左运动用“-”表示;3)表示距离——右—左,若无法判定两点的左右需加绝对值;4)列式求解——根据条件列方程或代数式,求值。注意:要注意动点是否会来回往返运动,速度是否改变等。③分类讨论的思想:(1)数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,注意多种情况的分类讨论。(2)对于两个动点P、Q,若点P、Q的左右位置关系不明确或有多种情况,可用p、q两数差的绝对值表示PQ两点距离,从而避免复杂分类讨论。模型1.动态规律(左右跳跃)模型模型(1):“1左1右”的等差数列式跳跃,两个一组根据规律计算即可;模型(2):“2左2右”的等差数列式跳跃,四个一组根据规律计算即可。例1.(2023·江苏·泰州七年级阶段练习)在如图的数轴上,一动点Q从原点O出发,沿数轴以每秒钟4个单位长度的速度来回移动,其移动方式是先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…(1)求出2.5秒钟后动点Q所处的位置;(2)求出7秒钟后动点Q所处的位置;(3)如果在数轴上有一个定点A,且A与原点O相距48个单位长度,问:动点Q从原点出发,可能与点A重合吗?若能,则第一次与点A重合需多长时间?若不能,请说明理由.例2.(2023·浙江·七年级期末)一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长度,表示第n秒时机器人在数轴上的位置所对应的数.给出下列结论:①;②;③;④.其中,正确结论的序号是_______.变式1.(23-24七年级上·重庆·阶段练习)一个动点P从数轴上的原点O出发开始移动,第1次向右移动1个单位长度到达点,第2次向右移动2个单位长度到达点,第3次向左移动3个单位长度到达点,第4次向左移动4个单位长度到达点,第5次向右移动5个单位长度到达点,…,点P按此规律移动,则移动第2022次后到达的点在数轴上表示的数为(

)A.2020 B.2021 C.2022 D.2023变式2.(2023·福建龙岩·七年级期末)如图,A点的初始位置在数轴上表示1的点上,先对A做如下移动:第一次向右移动3个单位长度到达点B,第二次从B点出发向左移动6个单位长度到达点C,第三次从C点出发向右移动9个单位长度到达点D,第四次从D点出发向左移动12个单位长度到达点E,…….以此类推,按照以上规律第(

)次移动到的点到原点的距离为20.A.7 B.10 C.14 D.19模型2.单(多)动点匀速模型模型(1):动点P从点A(点A在数轴上对应的数是a)出发,以每秒v个单位的速度向右移动,t秒后,到达B点,B点对应的数是:a+vt。模型(1):动点P从点A(点A在数轴上对应的数是a)出发,以每秒v个单位的速度向左移动,t秒后,到达C点,C点对应的数是:a-vt。例1.(23-24七年级上·江西吉安·期中)【阅读材料】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合,某数学兴趣小组探究数轴发现了一些重要的规律.规律1:如图1,数轴上点A表示的数为a,点B表示的数为b,则A、B两点间的距离可表示为:①(即用右边点B表示的数减去左边点A表示的数);②(即两点表示的数之差的绝对值).规律2:数轴上A、B两点的中点M表示的数为【简单应用】如图1,点A在数轴上所对应的数为,点B表示的数为4,P是数轴上一动点.(1)则A、B两点间的距离________,A、B两点的中点M表示的数为________;(2)若A、P两点间的距离,则点P表示的数为________.【拓展运用】如图2,已知数轴上有A、B两点,分别表示的数为,8,点A以每秒2个单位的速度沿数轴向右匀速运动,点B以每秒3个单位向左匀速运动,设运动时间为t秒().(3)用含t的式子填空:点A运动t秒后所在位置的点表示的数为________;点B运动t秒后所在位置的点表示的数为________;此时A、B两点的中点M表示的数为________.(4)按上述方式运动,A、B两点经过多少秒会相距5个单位长度.变式1.(23-24七年级上·河南商丘·期中)如图,相距的A、B两地间有一条笔直的马路,C地位于A、B两地之间且距A地,小明同学骑自行车从A地出发沿马路以每小时的速度向B地匀速运动,当到达B地后立即以原来的速度返回,到达A地时停止运动,设运动时间为t(小时),小明的位置为点P.

(1)以点C为坐标原点,以从A到B为正方向,用1个单位长度表示画数轴,指出点A所表示的有理数;(2)在(1)的数轴上,求时点P表示的有理数;(3)当小明距离C地1km时,直接写出所有满足条件的t值变式2.(22-23七年级上·重庆江北·阶段练习)如图,A,B(A在B的左侧)是数轴上的两点,点A对应的数为﹣4,且,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左运动,同时动点Q从点B出发,以每秒5个单位长度的速度沿数轴向左运动,在点P,Q的运动过程中,M,N始终为,的中点,设运动时间为t()秒.(1)当P,Q重合时,求t的值;(2)当时,求t的值;(3)当时,点P,Q停止运动,此时点M,N也随之停止运动,将线段沿数轴以每秒2个单位长度的速度滑动,从此刻开始,经过t秒后满足时,求t的值.模型3.单(多)动点变速模型例1.(2023·重庆九龙坡·七年级期末)已知数轴上的点,,,所表示的数分别是,,,,且.(1)求,,,的值;(2)点,沿数轴同时出发相向匀速运动,秒后两点相遇,点的速度为每秒4个单位长度,求点的运动速度;(3),两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,点以每秒1个单位长度的速度向数轴正方向开始运动,在秒时有,求的值;(4),两点以(2)中的速度从起始位置同时出发相向匀速运动,当点运动到点起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点起始位置方向运动;当点运动到点起始位置时马上停止运动.当点停止运动时,点也停止运动.在此运动过程中,,两点相遇,求点,相遇时在数轴上对应的数(请直接写出答案).变式1.(23-24七年级上·江苏盐城·期中)如图,点、、在数轴上对应的数分别是、、,且、满足,动点从点出发以单位/秒的速度向右运动,同时点从点出发,以个单位/秒速度向左运动,、两点之间为“变速区”,规则为从点运动到点期间速度变为原来的一半,之后立刻恢复原速,从点运动到点期间速度变为原来的倍,之后立刻恢复原速,设运动时间为秒.(1)____,____,、两点间的距离为____个单位;(2)①若动点从出发运动至点时,求的值;②当、两点相遇时,求相遇点在数轴上所对应的数;(3)当___时,、两点到点的距离相等.变式2.(2023·广东·七年级专题练习)如下图,数轴上,点A表示的数为,点B表示的数为,点C表示的数为9,点D表示的数为13,在点B和点C处各折一下,得到一条“折线数轴”,我们称点A和点D在数轴上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q从点D出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点Q从点C运动到点B需要的时间为______秒;(2)动点P从点A运动至D点需要的时间为多少秒?(3)当P、O两点在数轴上相距的长度与Q、O两点在数轴上相距的长度相等时,求出动点P在数轴上所对应的数.模型4.动点往返运动模型例1.(2023秋·河南驻马店·七年级统考期末)如图,数轴上有A,B两点,分别表示的数为,,且.点P从A点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B点后立即以相同的速度返回往A点运动,并持续在A,B两点间往返运动.在点P出发的同时,点Q从B点出发以每秒2个单位长度向左匀速运动,当点Q达到A点时,点P,Q停止运动.(1)填空:,;(2)求运动了多长时间后,点P,Q第一次相遇,以及相遇点所表示的数;(3)求当点P,Q停止运动时,点P所在的位置表示的数;(4)在整个运动过程中,点P和点Q一共相遇了几次.(直接写出答案)变式1.(23-24七年级上·福建三明·期中)已知数轴上有、、三个点,分别表示有理数、、,动点从出发,以每秒个单位长度的速度向终点移动,设移动时间为秒.若用,,分别表示点与点、点、点的距离,试回答以下问题.

(1)当点运动秒时,______,______,______;(2)当点运动了秒时,请用含的代数式表示到点、点、点的距离:______,______,______;(3)经过几秒后,点到点、点的距离相等?此时点表示的数是多少?(4)当点运动到点时,点从点出发,以每秒个单位长度的速度向点运动,点到达点后,再立即以同样速度返回,运动到终点.在点开始运动后,、两点之间的距离能否为个单位长度?如果能,请直接写出点表示的数;如果不能,请说明理由.变式2.(2023·河南洛阳·七年级期末)数轴体现了数形结合的数学思想,若数轴上点A,B表示的数分别为a,b,则A、B两点之间的距离表示为.如:点A表示的数为2,点B表示的数为3,则.问题提出:(1)填空:如图,数轴上点A表示的数为−2,点B表示的数为13,A、B两点之间的距离______,线段AB的中点表示的数为______.(2)拓展探究:若点P从点A出发,以每秒3个单位长度的速度沿数轴向右运动,同时点Q从点B出发.以每秒2个单位长度的速度向左运动.设运动时间为t秒(t>0)。①用含t的式子表示:t秒后,点Р表示的数为______;点Q表示的数为______;②求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数.(3)类比延伸:在(2)的条件下,如果P、Q两点相遇后按照原来的速度继续运动,当各自到达线段AB的端点后立即改变运动方向,并以原来的速度在线段AB上做往复运动,那么再经过多长时间P、Q两点第二次相遇.请直接写出所需要的时间和此时相遇点所表示的数.模型5.动态中点与n等分点模型例1.(2023·山东·七年级期末)定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为-7,点N所表示的数为2(1)点E,F,G表示的数分别是-3,6.5,11,其中是【M,N】美好点的是;写出【N,M】美好点H所表示的数是.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?变式1.(23-24七年级上·河北石家庄·期末)如图,已知A,B(B在A的左侧)是数轴上的两点,点A对应的数为8,且,动点P从点A出发,以每秒2个单位长度的速度沿数轴向左运动,在点P的运动过程中,M,N始终为AP,BP的中点,设运动时间为秒,则下列结论中正确的有(

)①点B对应的数是;②点P到达点B时,;③时,;

④在点P的运动过程中,线段MN的长度不变.A.2个 B.1个 C.4个 D.3个变式2.(2023·安徽滁州·七年级校考阶段练习)在数轴上,若点、点表示的数分别是、,则、两点间的距离可以表示为,例如,在数轴上,表示数和数的两点间的距离是,表示数和数的两点间的距离是,利用上述结论,解决问题:(1)若,则=_____;(2)若有一个半径为的圆上有一点,与数轴上表示的点重合,将圆沿数轴无滑动的滚动周,点到达点的位置,则点表示的数为______用含有的代数式表示;(3),为数轴上的两个动点,点表示的数为,点表示的数为,且,点C表示的数为,若点、、、三点中的某一点到另外两点的距离相等,求、的值.模型6.动态定值(无参型)模型设未知数并表示各动点对应的数,若是行程问题一般设运动时间为t,从而表示出两点之间的距离。当代数式的计算结果中不含有未知数t,则代数式为定值。例1.(23-24七年级上·陕西渭南·期中)已知数轴上A,B,C三点对应的数分别为、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为,点B与点P之间的距离表示为.

(1)若,求x的值;(2)若,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:的值是否发生变化?若不变化,求出这个定值,若变化,请说明理由.变式1.(2023·江苏苏州·七年级期末)如图,射线上有三点,满足cm,cm,cm.点从点出发,沿方向以2cm/秒的速度匀速运动,点从点出发在线段上向点匀速运动,两点同时出发,当点运动到点时,点停止运动.(1)若点运动速度为3cm/秒,经过多长时间两点相遇?(2)当时,点运动到的位置恰好是线段的中点,求点的运动速度;(3)自点运动到线段上时,分别取和的中点,求的值.变式2.(23-24七年级上·陕西西安·期末)如图,数轴上线段(单位长度),(单位长度),点A在数轴上表示的数是,点C在数轴上表示的数是16.若线段以6个单位长度/秒的速度向右匀速运动,同时线段以2个单位长度/秒的速度向左匀速运动.设运动的时间为t秒,请解决下列问题:(1)当时,A点表示的数为_________,此时_________;(2)当运动到(单位长度)时,求运动时间t的值;(3)P是线段上一点,当点B运动到线段上时,若关系式成立,请直接写出此时线段的长:________.模型7.动态定值(含参型)模型例1.(2023·湖南衡阳·七年级校考阶段练习)如图,点表示的数是,点表示的数是,满足,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间为秒,动点表示的数是.(1)直接写______,______,______用含的代数式表示;(2)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,①问点运动多少秒时追上点?②问点运动多少秒时与点相距个单位长度?并求出此时点表示的数;(3)点、以(2)中的速度同时分别从点、向右运动,同时点从原点以每秒个单位的速度向右运动,是否存在常数,使得的值为定值,若存在请求出值以及这个定值;若不存在,请说明理由.变式1.(2023·江苏·七年级专题练习)已知a、b满足,,且有理数a、b、c在数轴上对应的点分别为A、B、C.(1)则______,______,______.(2)点D是数轴上A点右侧一动点,点E、点F分别为中点,当点D运动时,线段的长度是否发生变化,若变化,请说明理由,若不变,请求出其值;(3)若点A、B、C在数轴上运动,其中点C以每秒1个单位的速度向左运动,同时点A和点B分别以每秒3个单位和每秒2个单位的速度向右运动请问:是否存在一个常数m使得不随运动时间t的改变而改变若存在,请求出m和这个不变化的值;若不存在,请说明理由.模型8.数轴折叠(翻折)模型例1.(2023·江苏·七年级期中)平移和翻折是初中数学中两种重要的图形变化,阅读并回答下列问题:(一)平移:在平面内,讲一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.(1)把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动2个单位长度,这时笔尖的位置表示的数是;(2)一个机器人从数轴上原点出发,并在数轴上移动2次,每次移动2个单位后到达B点,则B点表示的数是;(3)如图,数轴上点A表示的数为−1,点B表示的数为1,点P从5出发,若P,A两点的距离是A,B两点距离的2倍,则需将点P向左移动个单位.(二)翻折:将一个图形沿着某一条直线折叠的运动.(4)若折叠纸条,表示−3的点与表示1的点重合,则表示−4的点与表示的点重合;(5)若数轴上A,B两点之间的距离为10,点A在点B的左侧,A,B两点经折叠后重合,折痕与数轴相交于表示−1的点,则A点表示的数为;(6)在数轴上,点M表示是的数为4,点N表示的数为x,将点M,N两点重合后折叠,得折痕①,折痕①与数轴交于P点;将点M与点P重合后折叠,得折痕②,折痕②与数轴交于Q点.若此时点M与点Q的距离为2,则x=.变式1.(2023·山东·七年级月考)在数轴上,已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与表示的点重合,则4表示的点与数______表示的点重合;(2)若-1表示的点与3表示的点重合,-3表示的点与数______表示的点重合;(3)若数p表示的点与原点重合,此时折线与数轴的交点表示的有理数是______;(3)若数轴上A、B两点之间的距离为m个单位长度,点A表示的有理数是a,并且A、B两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是______.变式2.(23-24七年级上·江苏徐州·期中)【思考背景】数轴是数学中的一个重要工具,利用数轴可以将数与形完美地结合,帮助我们更加直观的思考问题.平移和翻折是数学中两种重要的图形变化,从变化的角度观察数轴,可以提出很多有趣的问题:【问题情境】(1)平移运动:如图1,数轴上的一点向右移动4个单位长度,再向左移动1个单位长度到达点.①______(用含的代数式表示);②将点沿着数轴先向右移动个单位长度,再向左移动个单位长度得到点,求点表示的数;③一机器人从原点开始,第1次向左移动1个单位,紧接着第2次向右移动2个单位,第3次向左移动3个单位,第4次向右移动4个单位,…,以此规律,当它移动2023次时,所在数轴上的点表示的数是______.(2)翻折变换:①若在原点处折叠数轴使之两侧重合,数轴上的点与点恰好重合,则点与点表示的数、满足关系:______;②若以表示的点为折点,折叠数轴使之两侧重合,与表示的点重合的点在数轴上表示的数是______;③如图2,一条数轴上有点、、,其中点、表示的数分别是、8,现以点为折点,将数轴向右对折重合,若点、对应重合的点分别为点、,点与点相距2个单位长度,请直接写出点表示的数.【迁移拓展】请你结合以上情境,思考并提出一个合理的数学问题.(不要求作答)模型9.数轴上的线段移动模型例1.(2023·广东佛山·七年级阶段练习)如图,有两条线段,(单位长度),(单位长度)在数轴上,点在数轴上表示的数是-12,点在数轴上表示的数是15.(1)点在数轴上表示的数是______,点在数轴上表示的数是______,线段的长=______;(2)若线段以1个单位长度秒的速度向右匀速运动,同时线段以2个单位长度秒的速度向左匀速运动.当点与重合时,点与点在数轴上表示的数是多少?(3)若线段以1个单位长度秒的速度向左匀速运动,同时线段以2个单位长度/秒的速度也向左匀速运动.设运动时间为秒,当为何值时,点与点之间的距离为1个单位长度?变式1.(2023·山东济南·七年级期末)在数学综合实践活动课上,小亮同学借助于两根小木棒m、n研究数学问题:如图,他把两根木棒放在数轴上,木棒的端点A、B、C、D在数轴上对应的数分别为a、b、c、d,已知|a+5|+(b+1)2=0,c=3,d=8.(1)求m和n的长度;(2)小亮把木棒m、n同时沿x轴正方向移动,m、n的速度分别为4个单位/s和3个单位/s,设平移时间为t(s)①若在平移过程中原点O恰好是木棒m的中点,则t=(s);②在平移过程中,当木棒m、n重叠部分的长为2个单位长度时,求t的值.变式2.(2023·河南信阳·七年级校考期中)已知M,N两点在数轴上所表示的数分别为m,n,且m,n满足:|m﹣12|+(n+3)2=0(1)则m=,n=;(2)①情境:有一个玩具火车AB如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A移动到点B时,点B所对应的数为m,当点B移动到点A时,点A所对应的数为n.则玩具火车的长为个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB以每秒2个单位长度的速度向右运动,同时点P和点Q从N、M出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB运动后对应的位置为A′B′.是否存在常数k使得3PQ﹣kB′A的值与它们的运动时间无关?若存在,请求出k和这个定值;若不存在,请说明理由.1.(2023·北京·七年级期末)已知有理数满足:.如图,在数轴上,点是原点,点所对应的数是,线段在直线上运动(点在点的左侧),,下列结论①;②当点与点重合时,;③当点与点重合时,若点是线段延长线上的点,则;④在线段运动过程中,若为线段的中点,为线段的中点,则线段的长度不变.其中正确的是(

)A.①③ B.①④ C.①②③④ D.①③④2.(23-24七年级上·浙江台州·期末)已知点是数轴的原点,点、、在数轴上对应的数分别是,,,且,满足,动点从点出发以2单位/秒的速度向右运动,同时点从点出发,以1个单位/秒速度向左运动,、两点之间为“变速区”,规则为从点运动到点期间速度变为原来的一半,之后立刻恢复原速,从点运动到点期间速度变为原来的3倍,之后立刻恢复原速,运动时间为秒时,、两点到点的距离相等.3.(2023·江苏·七年级专题练习)我们规定:数轴上的点到原点的距离为,如果数轴上存在某点,到点的距离是的整数倍,就把点称作点的倍关联点.当点所表示的数是时,(1)如果存在点的倍关联点,则_______;点所表示的数是_______;(2)如果点在数轴上所表示的两点之间运动,若存在点最大的倍关联点,则_______.4.(23-24七年级上·陕西·阶段练习)如图,已知点是数轴上三点,为原点,点表示的数为.(1)点表示的数为__________,点对应的数为__________.(2)动点分别同时从点出发,分别以每秒6个单位长度和每秒3个单位的速度沿数轴正方向运动.点为线段的中点,点在线段上,且,若运动时间为秒.请用含的代数式分别表示点、点所表示的数.

5.(2023·广东深圳·七年级校联考期中)已知数轴上两点A、B对应的数分别是,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距46个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足时,M、N两点之间,N、P两点之间,M、P两点之间分别有47个、37个、10个整数点,请直接写出t1,t2的值.6.(2023·河南南阳·七年级期中)如图:在数轴上点表示数点表示数点表示数是最小的正整数,且满足.(1)求的值;(2)若将数轴折叠,使点与点重合,则点与数_______表示的点重合;(3)点从点出发,以每秒个单位长度的速度在数轴上向点运动,当点到达点后立即返回,仍然以每秒个单位长度的速度运动至点停止,设运动时间为。①当时,求点表示的有理数;②当点表示的有理数与点的距离为个单位长度时,直接写出所有满足条件的值.7.(2023·福建厦门·七年级校考期中)已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足,.(1)分别求a,b,c的值;(2)若点D在数轴上对应的数为x,当A、D间距离是B、C间距离的4倍时,请求出x的值;(3)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时向右运动,设运动时间为t秒,是否存在一个常数k,使得的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.8.(2023福建·七年级期末)如图:在数轴上点表示数点示数点表示数是最大的负整数,在左边两个单位长度处,在右边个单位处。;;;若将数轴折叠,使得点与点重合,则点与数___表示的点重合;点开始在数轴上运动,若点以每秒个单位长度的速度向左运动,同时,点和点分别以每秒个单位长度和个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为点与点之间的距离表示为点与点之间的距离表示为,则__,__,___;(用含的代数式表示)请问:的值是否随着时间的变化而改变﹖若变化,请说明理由;若不变,请求其值.9.(23-24七年级上·广东佛山·期中)【阅读材料】若数轴上点、点表示的数分别为,(),则、两点间的距离可表示为,记作.【解决问题】一个点从数轴上的原点开始,先向左移动2个单位长度到达点,再向右移动10个单位长度到达点.(1)请画出数轴,并在数轴上标出、两点的位置;(2)若动点,分别从点,同时出发,沿数轴向左运动.已知点的速度是每秒1个单位长度,点的速度是每秒2个单位长度,设移动时间为秒().①用含的代数式表示:秒时,点表示的数为______,点表示的数为______;②为何值时,点表示的数与点表示的数互为相反数?③为何值时,,两点之间的距离为4?10.(23-24七年级上·重庆·阶段练习)阅读下面材料:若点在数轴上分别表示实数,则两点之间的距离表示为,且;回答下列问题:(1)①数轴上表示和2的两点和之间的距离是;②在①的情况下,如果,那么为;(2)代数式取最小值时,相应的的取值范围是.(3)若点在数轴上分别表示数,是最大的负整数,且,①直接写出的值.②点同时开始在数轴上运动,若点以每秒1个单位长度的速度向左运动,同时,点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为.请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.

11.(2023·河南漯河·七年级统考期中)操作探究:已知在纸上有一数轴(如图所示).(1)操作一:折叠纸面,若使1表示的点与表示的点重合,则表示的点与________表示的点重合.(2)操作二:折叠纸面,若使表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A,B两点之间距离为10(A在B左侧),且A,B两点经折叠后重合,则点A表示的数为________,点B表示的数为________;(3)操作三:点E以每秒3个单位长度的速度从数5对应的点沿着数轴的负方向运动,点F以每秒1个单位长度的速度从数对应的点沿着数轴的负方向运动,且两个点同时出发,请直接写出多少秒后,折叠纸面,使1表示的点与表示的点重合时,点E与点F也恰好重合.12.(2023·山东·七年级期中)已知,如图,、、分别为数轴上的三个点,点对应的数为60,点在点的左侧,并且与点的距离为30,点在点左侧,点到距离是点到点距离的4倍.(1)求出数轴上点对应的数及的距离.(2)点从点出发,以3单位/秒的速度项终点运动,运动时间为秒.①点点在之间运动时,则_______.(用含的代数式表示);②点在点向点运动过程中,何时、、三点中其中一个点是另外两个点的中点?求出相应的时间.③当点运动到点时,另一点以5单位/秒速度从点出发,也向点运动,点到达点后立即原速返回到点,那么点在往返过程中与点相遇几次?直接写出相遇是点在数轴上对应的数.13.(2023·成都市·七年级专题练习)如下图,数轴上,点A表示的数为,点B表示的数为,点C表示的数为9,点D表示的数为13,在点B和点C处各折一下,得到一条“折线数轴”,我们称点A和点D在数轴上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q从点D出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点Q从点C运动到点B需要的时间为______秒;(2)动点P从点A运动至D点需要的时间为多少秒?(3)当P、O两点在数轴上相距的长度与Q、O两点在数轴上相距的长度相等时,求出动点P在数轴上所对应的数.14.(23-24七年级上·湖北武汉·阶段练习)已知A,B,C三点在数轴上所对应的数分别为a,b,18,且a、b满足.动点M从点A出发,以2个单位长度/秒的速度向右运动,同时,动点N从点C出发,以1个单位长度/秒的速度向左运动,线段为“变速区”,规则为:从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.当点M到达点C时,两点都停止运动.设运动的时间为t秒.

(1),,;(2)M,N两点相遇时,求相遇点在数轴上所对应的数.(3)点D为线段中点,当t为多少秒时,?15.(22-23七年级上·四川成都·期中)已知数轴上有、、三点分别表示数,,,两只电子蚂蚁甲、乙分别从、两点同时相向而行,甲的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论