版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市金坛区白塔中学2024年中考猜题数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是()A.点A B.点B C.点C D.点D2.下列运算正确的是()A.a2+a2=a4 B.(a+b)2=a2+b2 C.a6÷a2=a3 D.(﹣2a3)2=4a63.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.164.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为()A.100° B.105° C.110° D.115°5.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为()A.–1B.2C.1D.–26.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.7.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A.主视图是中心对称图形B.左视图是中心对称图形C.主视图既是中心对称图形又是轴对称图形D.俯视图既是中心对称图形又是轴对称图形8.计算4+(﹣2)2×5=()A.﹣16B.16C.20D.249.已知是一个单位向量,、是非零向量,那么下列等式正确的是()A. B. C. D.10.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)二、填空题(本大题共6个小题,每小题3分,共18分)11.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5.现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.12.已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于________厘米.13.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是______.(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.14.已知a+b=1,那么a2-b2+2b=________.15.如图,已知在平行四边形ABCD中,E是边AB的中点,F在边AD上,且AF:FD=2:1,如果=,=,那么=_____.16.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为_____.三、解答题(共8题,共72分)17.(8分)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)18.(8分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).19.(8分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为.(1)求抛物线C1的表达式;(2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.20.(8分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21.(8分)如图,在平面直角坐标系中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.22.(10分)如图,在平面直角坐标系中,一次函数y=﹣12x+3的图象与反比例函数y=kx(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点23.(12分)小明对,,,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20人.所有超市女工占比统计表超市女工人数占比62.5%62.5%50%75%超市共有员工多少人?超市有女工多少人?若从这些女工中随机选出一个,求正好是超市的概率;现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.24.网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人;(2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是;(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小.故选B.2、D【解析】
根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答.【详解】A、a2+a2=2a2,故错误;B、(a+b)2=a2+2ab+b2,故错误;C、a6÷a2=a4,故错误;D、(-2a3)2=4a6,正确;故选D.【点睛】本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则.3、A【解析】
∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.4、B【解析】
根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.【详解】∵四边形ABCD内接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故选:B.【点睛】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.5、C【解析】
把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2变形后代入计算即可.【详解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故选C.【点睛】本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根.6、D【解析】
根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决.【详解】由题意可得,去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=,故选:D.【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.7、D【解析】
先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.【详解】解:A、主视图不是中心对称图形,故A错误;
B、左视图不是中心对称图形,故B错误;
C、主视图不是中心对称图形,是轴对称图形,故C错误;
D、俯视图既是中心对称图形又是轴对称图形,故D正确.
故选:D.【点睛】本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.8、D【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.详解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.9、B【解析】
长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A.由于单位向量只限制长度,不确定方向,故错误;B.符合向量的长度及方向,正确;C.得出的是a的方向不是单位向量,故错误;D.左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.10、B【解析】
根据三视图的定义即可解答.【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】分析:根据勾股定理,可得,根据平行四边形的性质,可得答案.详解:由勾股定理得:=,即(0,4).矩形ABCD的边AB在x轴上,∴四边形是平行四边形,A=B,=AB=4-(-3)=7,与的纵坐标相等,∴(7,4),故答案为(7,4).点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.12、1【解析】
根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【详解】∵线段c是线段a和线段b的比例中项,∴,解得(线段是正数,负值舍去),∴,故答案为:1.【点睛】本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.13、④【解析】
根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【详解】①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x⩽1,即最大值为1,故本项错误;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.【点睛】此题考查运算的定义,解题关键在于理解题意的运算法则.14、1【解析】
解:∵a+b=1,∴原式=故答案为1.【点睛】本题考查的是平方差公式的灵活运用.15、【解析】
根据,只要求出、即可解决问题;【详解】∵四边形是平行四边形,,,,,,,,.故答案为.【点睛】本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出、.16、1【解析】
根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则DE=2,作DF⊥AB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解【详解】解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,则AB=1﹣4=4,当直线经过点D,设其交AB于点E,则DE=2,作DF⊥AB于点F,∵y=﹣x于x轴负方向成45°角,且AB∥x轴,∴∠DEF=45°,∴DF=EF,∴在直角三角形DFE中,DF2+EF2=DE2,∴2DF2=1∴DF=2,那么ABCD面积为:AB•DF=4×2=1,故答案为1.【点睛】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线三、解答题(共8题,共72分)17、(1)作图见解析;(2)EB是平分∠AEC,理由见解析;(3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【解析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;(3)先判断出△AEP≌△FBP,即可得出结论.【详解】(1)依题意作出图形如图①所示;(2)EB是平分∠AEC,理由:∵四边形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵点E是CD的中点,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC==,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.18、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】
(1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;(1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD为x,∵点A(3,0),点B(0,),∴AO=3,BO=∴AB=6∵折叠∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(﹣OD)1.∴OD=∴D(0,)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD∥OA∴且BD=AC,∴∴BD=﹣18∴OD=﹣(﹣18)=18﹣∵tan∠ABO=,∴∠ABC=30°,即∠BAO=60°∵tan∠ABO=,∴CD=11﹣6∴D(11﹣6,11﹣18)(Ⅲ)如图:过点C作CE⊥AO于E∵CE⊥AO∴OE=1,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=1,CE=∵BC=AB﹣AC∴BC=6﹣1=4若点B'落在A点右边,∵折叠∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=1+∴B'(1+,0)若点B'落在A点左边,∵折叠∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=﹣1∴B'(1﹣,0)综上所述:B'(1+,0),(1﹣,0)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.19、(1)y;(2);(3)E(,0).【解析】
(1)根据抛物线C1的顶点坐标可设顶点式将点B坐标代入求解即可;(2)由抛物线C1绕点B旋转180°得到抛物线C2知抛物线C2的顶点坐标,可设抛物线C2的顶点式,根据旋转后抛物线C2开口朝下,且形状不变即可确定其表达式;(3)作GK⊥x轴于G,DH⊥AB于H,由题意GK=DH=3,AH=HB=EK=KF,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK∽△GFK,由其对应线段成比例的性质可知AK长,结合A、B点坐标可知BK、BE、OE长,可得点E坐标.【详解】解:(1)∵抛物线C1的顶点为,∴可设抛物线C1的表达式为y,将B(﹣1,0)代入抛物线解析式得:,∴,解得:a,∴抛物线C1的表达式为y,即y.(2)设抛物线C2的顶点坐标为∵抛物线C1绕点B旋转180°,得到抛物线C2,即点与点关于点B(﹣1,0)对称∴抛物线C2的顶点坐标为()可设抛物线C2的表达式为y∵抛物线C2开口朝下,且形状不变∴抛物线C2的表达式为y,即.(3)如图,作GK⊥x轴于G,DH⊥AB于H.由题意GK=DH=3,AH=HB=EK=KF,∵四边形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK.∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴,∴,∴AK=6,,∴BE=BK﹣EK=3,∴OE,∴E(,0).【点睛】本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.20、50见解析(3)115.2°(4)【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.21、(1)k的值为3,m的值为1;(2)0<n≤1或n≥3.【解析】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.22、(1)反比例函数的表达式为y=4x(x>0);(2)点P【解析】
(1)根据点A(a,2),B(4,b)在一次函数y=﹣12x+3的图象上求出a、b的值,得出A、B(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.【详解】(1)∵点A(a,2),B(4,b)在一次函数y=﹣12x∴﹣12a+3=2,b=﹣1∴a=2,b=1,∴点A的坐标为(2,2),点B的坐标为(4,1),又∵点A(2,2)在反比例函数y=kx∴k=2×2=4,∴反比例函数的表达式为y=4x(x(2)延长CA交y轴于点E,延长CB交x轴于点F,∵AC∥x轴,BC∥y轴,则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)∴四边形OECF为矩形,且CE=4,CF=2,∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣12×2×2﹣1=4,设点P的坐标为(0,m),则S△OAP=12×2•|m∴m=±4,∴点P的坐标为(0,4)或(0,﹣4).【点睛】此题考查了反比例
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专业电脑配件批发销售协议版B版
- 2024年地方电力网络升级改造工程承包合同书版
- 2024商业采购协议范本大全版B版
- 2024专业版劳动协议终止通知函范例版B版
- 江南大学《分子生物学》2022-2023学年第一学期期末试卷
- 江南大学《材料科学与工程基础》2021-2022学年第一学期期末试卷
- 国际残疾人日帮助残疾人关爱弱势群体课件
- 二零二四年度技术开发合作合同标的和义务3篇
- 暨南大学《解析几何》2022-2023学年第一学期期末试卷
- 暨南大学《房地产金融》2021-2022学年第一学期期末试卷
- 2024年食品安全生产经营大比武理论考试题库-下(多选、判断题)
- 人力资源许可证制度(服务流程、服务协议、收费标准、信息发布审查和投诉处理)
- 2024年舟山继续教育公需课考试题库
- 一年级拼音默写表
- 家长会课件:七年级家长会班主任优质课件
- 明亚保险经纪人考试题库答案
- DL-T 5369-2021 电力建设工程工程量清单计算规范 火力发电工程
- 《思想道德与法治》 课件 第四章 明确价值要求 践行价值准则
- 部编版五年级语文上册习作《______即景》PPT课件
- 《师说》优质课一等奖ppt课件
- FIT2D简明使用手册
评论
0/150
提交评论