版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【成才之路】-学年高中数学2-31.1基本计数原理同步测试新人教B版选修2-3一、选择题1.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是()A.56B.65C.eq\f(5×6×5×4×3×2,2)D.6×5×4×3×2[答案]A[解析]本题主要考排列组合知识.1名同学有5种选择,则6名同学共有56种选择.2.有一排5个信号的显示窗,每个窗可亮红灯、绿灯或者不亮灯,则共可以发出的不同信号有()种A.25 B.52C.35 D.53[答案]C3.将5名大学毕业生全部分配给3所不同的学校,不同的分配方案有()A.8 B.15C.125 D.243[答案]D4.(·长安一中质检、北京西城模拟)用0、1、…、9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252C.261 D.279[答案]B[解析]用0,1,…,9十个数字,可以组成的三位数的个数为9×10×10=900,其中三位数字全不相同的为9×9×8=648,所以可以组成有重复数字的三位数的个数为900-648=252.5.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作点的坐标,则在直角坐标系中,第一、第二象限不同点的个数为()A.18 B.16C.14 D.10[答案]C[解析]可分为两类.以集合M中的元素做横坐标,N中的元素做纵坐标,集合M中取一个元素的方法有3处,要使点在第一、第二象限内,则集合N中只能取5、6两个元素中的一个有2种.根据分步计数原理有3×2=6(个).以集合N的元素做横坐标,M的元素做纵坐标,集合N中任取一元素的方法有4种,要使点在第一、第二象限内,则集合M中只能取1、3两个元素中的一个有2种,根据分步计数原理,有4×2=8(个).综合上面两类,利用分类计数原理,共有6+8=14(个).故选C.6.某公共汽车上有10名乘客,要求在沿途的5个车站全部下完,乘客下车的可能方式有()A.510种 B.105种C.50种 D.以上都不对[答案]A[解析]任何一个乘客可以在任一车站下车,且相互独立,所以每一个乘客下车的方法都有5种,由分步计数原理知N=510.故选A.7.已知x∈{2,3,7},y∈{-31,-24,4},则x·y可表示不同的值的个数是()A.1+1=2 B.1+1+1=3C.2×3=6 D.3×3=9[答案]D[解析]由分步计数原理N=3×3=9(种).故选D.二、填空题8.已知a∈{3,4,5},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同圆的个数为____________个.[答案]24[解析]确定圆的方程可分三步:确定a有3种方法,确定b有4种方法,确定r有2种方法,由分步计数原理知N=3×4×2=24(个).9.用数字1,2,3组成三位数.(1)假如数字可以重复,共可组成____________个三位数;(2)其中数字不重复的三位数共有____________个;(3)其中必须有重复数字的有____________个.[答案](1)27(2)6(3)21[解析](1)排成数字允许重复的三位数,个位、十位、百位都有3种排法,∴N=33=27(个).(2)当数字不重复时,百位排法有3种,十位排法有两种,个位只有一种排法,∴N=3×2×1=6(个)(也可先排个位或十位).(3)当三数必须有重复数字时分成两类:三个数字相同,有3种,只有两个数字相同,有3×3×2=18(个),∴N=3+18=21(个).三、解答题10.某文艺小组有20人,每人至少会唱歌或跳舞中的一种,其中14人会唱歌,10人会跳舞.从中选出会唱歌与会跳舞的各1人,有多少种不同选法?[解析]只会唱歌的有10人,只会跳舞的有6人,既会唱歌又会跳舞的有4人.这样就可以分成四类完成:第一类:从只会唱歌和只会跳舞的人中各选1人,用分步乘法计数原理得10×6=60(种);第二类:从只会唱歌和既会唱歌又会跳舞的人中各选1人,用分步乘法计数原理得10×4=40(种);第三类:从只会跳舞和既会唱歌又会跳舞的人中各选1人,用分步乘法计数原理得6×4=24(种);第四类:从既会唱歌又会跳舞的人中选2人,有6种方法.根据分类加法计数原理,得出会唱歌与会跳舞的各选1人的选法共有60+40+24+6=130(种).一、选择题1.已知函数y=ax2+bx+c,其中a、b、c∈{0,1,2,3,4},则不同的二次函数的个数共有()A.125 B.15C.100 D.10[答案]C[解析]由二次函数的定义知a≠0.∴选a的方法有4种.选b与c的方法都有5种.只有a、b、c都确定后,二次函数才确定.故由乘法原理知共有二次函数4×5×5=100个.故选C.2.(·福建理,5)满足a、b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13C.12 D.10[答案]B[解析]①当a=0时,2x+b=0总有实数根,∴(a,b)的取值有4个.②当a≠0时,需Δ=4-4ab≥0,∴ab≤1.a=-1时,b的取值有4个,a=1时,b的取值有3个,a=2时,b的取值有2个.∴(a,b)的取法有9个.综合①②知,(a,b)的取法有4+9=13个.3.某电话局的电话号码为168×××××,若后面的五位数字是由6或8组成的,则这样的电话号码一共有()A.20个 B.25个C.32个 D.60个[答案]C[解析]五位数字是由6或8组成的,可分五步完成,每一步都有两种方法,根据分步乘法计数原理,共有25=32个.二、填空题4.大小不等的两个正方体玩具,分别在各面上标有数字1,2,3,4,5,6,则向上的面标着的两个数字之积不小于20的积的结果有____________种.[答案]5[解析]第1个正方体向上的面标有的数字必大于等于4.如果是3,则3与第二个正方体面上标有数字最大者6的积3×6=18<20,4×5=5×4=20,4×6=6×4=24,5×5=25,5×6=6×5=30,6×6=36,以上积的结果为20,24,25,30,36共五种.5.(·北京理,13)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.[答案]36[解析]本题考查了计数原理与排列组合知识.先只考虑A与产品B相邻,此时用捆绑法,将A和B作为一个元素考虑,共有Aeq\o\al(4,4)=24种方法,而A和B有2种摆放顺序,故总计24×2=48种方法,再排除既满足A和B相邻,又满足A与C相邻的情况,此时用捆绑法,将A,B,C作为一个元素考虑,共有Aeq\o\al(3,3)=6种方法,而A,B,C有2种可能的摆放顺序,故总计6×2=12种方法.综上,符合题意的摆放共有48-12=36种.三、解答题6.若x,y∈N+,且x+y≤6,试求有序自然数对(x,y)的个数.[解析]按x的取值进行分类,x=1时,y=1,2,…,5,共构成5个有序自然数对.x=2时,y=1,2,…,4,共构成4个有序自然数对.……x=5时,y=1共构成1个有序自然数对,根据分类加法计数原理,共有N=5+4+3+2+1=15个有序自然数对.7.设椭圆eq\f(x2,a)+eq\f(y2,b)=1的焦点在y轴上,其中a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},求满足上述条件的椭圆的个数.[解析]因为椭圆的焦点在y轴上,所以b>a.则当a=1时,b可取2,3,4,5,6,7,有6种取法;当a=2时,b可取3,4,5,6,7,有5种取法;当a=3时,b可取4,5,6,7,有4种取法;当a=4时,b可取5,6,7,有3种取法;当a=5时,b可取6,7,有2种取法.故共有6+5+4+3+2=20个满足条件的椭圆.8.已知集合A={a1,a2,a3,a4},集合B={b1,b2},其中ai,bj(i=1,2,3,4;j=1,2)均为实数.(1)从集合A到集合B能构成多少个不同的映射?(2)能构成多少个以集合A为定义域,以集合B为值域的不同函数?[解析]
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共青科技职业学院《材料表面技术》2023-2024学年第一学期期末试卷
- 小朋友的安全课件
- 《营养苗的培育》课件
- 赣西科技职业学院《微波电路》2023-2024学年第一学期期末试卷
- 《漫谈课堂教学的有效性》课件
- 2022年上海市中级消防设施操作员《技能操作》近年真题(含答案)
- 小学生流感防治教育课件
- 三年级科学上册第四单元1常见材料教案苏教版
- 三年级英语上册Unit1Hello第5课时教案人教PEP
- 小学生模拟法庭教学课件
- 软件企业战略规划
- 护理安全隐患及风险防范
- 临床成人失禁相关性皮炎的预防与护理团体标准解读
- 期末复习试题(试题)-2024-2025学年三年级上册数学苏教版
- JGJT46-2024《建筑与市政工程施工现场临时用电安全技术标准》知识培训
- 供应链贸易安全制度
- 2024美容院规章制度(31篇)
- 《咳嗽的诊断与治疗指南(2021)》解读课件
- 现代农业机械操作考核试卷
- 2024-2030年中国纪录片行业前景动态及发展趋势预测报告
- 小学数学教师培训完整方案
评论
0/150
提交评论