版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
更多见微信号:alarmact,微信号:abcshuxue,微信号:antshuxue微信号:AA-teacher更多见微信公众号:数学第六感;微信公众号:数学三剑客;微信公众号:ABC数学更多见微信号:alarmact,微信号:abcshuxue,微信号:antshuxue微信号:AA-teacher本号资*料全部来源于微信公众号:数学第六感更多见微信公众号:数学第六感;微信公众号:数学三剑客;微信公众号:ABC数学函数与方程近5年考情(2020-2024)考题统计考点分析考点要求2024年天津卷第15题,5分从近几年高考命题来看,高考对函数与方程也经常以不同的方式进行考查,比如:函数零点的个数问题、位置问题、近似解问题,以选择题、填空题、解答题等形式出现在试卷中的不同位置,且考查得较为灵活(1)理解函数的零点与方程的解的联系.(2)理解函数零点存在定理,并能简单应用.(3)了解用二分法求方程的近似解.2024年全国甲卷,第16题,5分2023年天津卷第15题,5分2021年北京卷第15题,5分模块一模块一总览热点题型解读(目录)TOC\o"1-3"\n\h\z\u【题型1】求函数的零点【题型2】求函数零点所在区间【题型3】二分法求近似解【题型4】判断函数零点个数或交点个数【题型5】利用函数的零点所在区间求参数范围【题型6】已知零点个数求参数范围【题型7】比较零点的大小【题型8】求零点的和模块二模块二核心题型·举一反三【题型1】求函数的零点函数的零点1、函数零点的概念:对于一般函数,我们把使的实数叫做函数的零点.即函数的零点就是使函数值为零的自变量的值.【要点辨析】(1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零;(2)函数的零点也就是函数的图象与轴交点的横坐标;(3)函数的零点就是方程的实数根.2、函数的零点与方程的解的关系函数的零点就是方程的实数解,也就是函数的图象与轴的公共点的横坐标.所以方程有实数根函数的图象与轴有交点函数有零点.3、函数零点存在定理如果函数在区间上的图象是一条连续不断的曲线,且,那么,函数在区间内至少有一个零点,即存在,使得,这个也就是方程的解.函数的零点为(
)A. B. C.0 D.1【答案】C【解析】令,解得,故选:C.【巩固练习1】函数的零点为(
)A. B.2 C. D.【答案】A【解析】令,得,则.故选:A【巩固练习2】【巩固练习3】已知定义在上的是单调函数,且对任意恒有,则函数的零点为(
)A. B. C.9 D.27【答案】A【解析】设,即,因为,可得,所以,解得,所以,令,可得,即,解得.故选:A.【题型2】求函数零点所在区间判断函数零点所在区间的步骤第一步:将区间端点代入函数求函数的值;第二步:将所得函数值相乘,并进行符号判断;第三步:若符号为正切在该区间内是单调函数,则函数在该区间内无零点;若符号为负且函数图象连续,则函数在该区间内至少一个零点。函数的零点所在区间为(
)A. B. C. D.【答案】C【解析】因为和均是R上的增函数,所以函数是R上的增函数,又,,,所以函数的零点所在区间为.故选:C.【巩固练习1】函数的一个零点所在的区间是(
)A. B. C. D.【答案】B【解析】因为的定义域为,且在内单调递增,可知在内单调递增,且,所以函数的唯一一个零点所在的区间是.【巩固练习2】函数的一个零点所在的区间是(
)A. B. C. D.【答案】B【解析】因为的定义域为,且在内单调递增,可知在内单调递增,且,所以函数的唯一一个零点所在的区间是.【题型3】二分法求近似解所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法.求方程的近似解就是求函数零点的近似值.(2024·广东梅州·二模)用二分法求方程近似解时,所取的第一个区间可以是(
)A. B. C. D.【答案】B【解析】令,因为函数在上都是增函数,所以函数在上是增函数,,所以函数在区间上有唯一零点,所以用二分法求方程近似解时,所取的第一个区间可以是.【巩固练习1】一块电路板的线段之间有个串联的焊接点,知道电路不通的原因是焊口脱落造成的,要想用二分法的思想检测出哪处焊口脱落,至少需要检测()A.次 B.次C.次 D.次【答案】B【解析】利用二分法检测,每次取中点,焊接点数减半,不妨设需要次检测,则,即,因为,故的最小值为,即至少需要检测次.【巩固练习2】已知函数,在区间内存在一个零点,在利用二分法求函数近似解的过程中,第二次求得的区间中点值为.【答案】【分析】根据题意,利用对数的运算法则,结合零点二分法,准确计算,即可求解.【详解】由函数为单调递增函数,且在内存在一个零点,又由,则,第一次用二分法,由,因为,可得,即,可得,所以,所以确定函数的零点所在区间为;第二次用二分法,由,因为,可得,即所以,所以确定函数的零点所在区间为,所以第二次求得的区间的中点值为.【巩固练习3】(2024·辽宁大连·一模)牛顿迭代法是我们求方程近似解的重要方法.对于非线性可导函数在附近一点的函数值可用代替,该函数零点更逼近方程的解,以此法连续迭代,可快速求得合适精度的方程近似解.利用这个方法,解方程,选取初始值,在下面四个选项中最佳近似解为(
)A. B. C. D.【答案】D【解析】令,则,令,即,可得,迭代关系为,取,则,【题型4】判断函数零点个数或交点个数零点个数的判断方法(1)直接法:直接求零点,令,如果能求出解,则有几个不同的解就有几个零点.(2)定理法:利用零点存在定理,函数的图象在区间上是连续不断的曲线,且,结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)图象法:=1\*GB3①单个函数图象:利用图象交点的个数,画出函数的图象,函数的图象与轴交点的个数就是函数的零点个数.=2\*GB3②两个函数图象:将函数拆成两个函数和的差,根据,则函数的零点个数就是函数和的图象的交点个数.(4)性质法:利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数.函数的零点个数为(
)A.0 B.1 C.2 D.3【答案】B【解析】令,得,画出函数与的图象,可得这两个函数在上的图象有唯一公共点,故的零点个数为1.故选:B函数的零点个数为(
)A.0 B.1 C.2 D.3【答案】D【解析】通过图形可以得出有3个零点【巩固练习1】函数在定义域内的零点个数是(
)A.0 B.1 C.2 D.3【答案】B【解析】函数分别是R上的减函数和增函数,则函数是减函数,而,,所以函数在R上的零点个数是1.故选:B本号资#料全部来源于微信公众号:数学第六感【巩固练习2】(2024·江苏盐城·模拟预测)函数与的图象的交点个数是(
)A.2 B.3 C.4 D.6【答案】D【分析】在同一坐标系中,作出两个函数的图象,根据图象得到交点个数.【详解】函数与都是偶函数,其中,,在同一坐标系中,作出函数与的图象,如下图,由图可知,两函数的交点个数为6.【巩固练习3】(2019·全国·高考真题)函数在的零点个数为()A.2 B.3 C.4 D.5【答案】B【解析】令,得或,再根据x的取值范围可求得零点.由,得或,,.在的零点个数是3【巩固练习4】已知函数则函数的零点个数为(
)A.1 B.2 C.3 D.4本号资料全部来源于微信公众号*:数学第六*感【答案】C【解析】由题意可知,的零点个数可以转化为和函数的图象交点个数,它们的函数图象如图所示.故选:C.【题型5】利用函数的零点所在区间求参数范围本类问题应细致观察、分析图像,利用函数的零点及其他相关性质,建立参数的等量关系,列关于参数的不等式,解不等式,从而解决.函数在上存在零点,则实数a的取值范围是(
)A. B.或 C. D.或【答案】B【解析】令,因为,所以函数图象与轴有两个交点,因为函数在上存在零点,且函数图象连续,本号资料全部来源于微信#公众号:数学第六感所以,或,所以,或,解得或函数在区间存在零点.则实数m的取值范围是(
)*本号资料全部来源于#微信公众号:数学第六感A. B. C. D.【答案】B【解析】由在上单调递增,在上单调递增,得函数在区间上单调递增,因为函数在区间存在零点,所以,即,解得,所以实数m的取值范围是.【巩固练习1】(2024·高三·浙江绍兴·期末)已知命题:函数在内有零点,则命题成立的一个必要不充分条件是(
)本号资料全部#来源于微信公众#号:数学第六感A. B. C. D.【答案】D【解析】函数在上单调递增,由函数在内有零点,得,解得,即命题成立的充要条件是,显然成立,不等式、、都不一定成立,本号资料全部来*源于微信公众号:数学第六#感而成立,不等式恒成立,反之,当时,不一定成立,所以命题成立的一个必要不充分条件是.【巩固练习2】(2024·山西阳泉·三模)函数在区间存在零点.则实数m的取值范围是(
)A. B. C. D.【答案】B【解析】由在上单调递增,在上单调递增,得函数在区间上单调递增,因为函数在区间存在零点,所以,即,解得,所以实数m的取值范围是.【巩固练习3】(2024·四川巴中·一模)若函数在区间内恰有一个零点,则实数a的取值集合为(
)A. B.或.C. D.或.【答案】D【解析】由函数,若,可得,令,即,解得,符合题意;若,令,即,可得,当时,即,解得,此时,解得,符合题意;当时,即且,则满足,解得且,若,可得,令,即,解得或,其中,符合题意;若,可得,令,即,解得或,其中,符合题意;综上可得,实数的取值范围为或.【题型6】已知零点个数求参数范围已知函数零点个数,求参数取值范围的方法(1)直接法:利用零点存在的判定定理构建不等式求解;(2)数形结合法:将函数的解析式或者方程进行适当的变形,把函数的零点或方程的根的问题转化为两个熟悉的函数图象的交点问题,再结合图象求参数的取值范围;(3)分离参数法:分离参数后转化为求函数的值域(最值)问题求解.本号*资料全部来源于微信*公众号:数学第六感求函数的零点个数就是求函数图象与轴的交点个数,因此只要作出函数图象即可.如果函数图象不易作出,可将函数转化为的结构,然后转化为与的图象交点个数的问题.解决步骤第一步:将函数化为的形式,与一个含参,一个不含参.第二步:画出两个函数的图象.第三步:确定满足题意时含参函数的图象的移动范围,从而求出参数的取值范围.若函数有两个不同的零点,则实数a的取值范围是(
)A. B. C. D.【答案】A【解析】当时,由,得,因为函数有两个不同的零点,则当时,函数还有一个零点,因为,所以,所以实数a的取值范围是.故选:A函数有且只有一个零点,则m的取值范围是.【答案】【解析】由题意可得,问题等价于与有且只有一个交点.分别作图如下:考虑他们的临界情况,即与相切时,如上图,即与相切时,仅有一个交点.设切点为,则,所以,,所以,即,但因为与有且仅有一个交点,所以,即【巩固练习1】若函数有2个零点,则m的取值范围是.【答案】【解析】由,得.设函数,作出的大致图象,如图所示.函数有2个零点,即函数与函数的图象有两个交点,由图可知,m的取值范围是.【巩固练习2】已知函数,若方程有三个不同的实数根,则实数的取值范围是(
)A. B. C. D.【答案】B【解析】方程有三个不同的实数根,即函数与函数的图象有三个不同交点.作函数的图象如下图所示,由图可得,.所以实数的取值范围是:.故选:B.【巩固练习3】已知函数,.若有2个零点,则实数a的取值范围是(
)A. B. C. D.【答案】D【解析】时,,函数在上单调递减,,令可得,作出函数与函数的图象如图所示:由上图可知,当时,函数与函数的图象有2个交点,此时,函数有2个零点.因此,实数a的取值范围是.故选:D.【题型7】比较零点的大小利用数形结合、等价转化等数学思想.(2024·新疆乌鲁木齐·二模)设,函数的零点分别为,则(
)A. B. C. D.【答案】A【分析】由题意分别为函数与函数图象交点的横坐标,作出函数的图象,结合函数图象即可得解.【详解】分别令,则,则分别为函数与函数图象交点的横坐标,分别作出函数的图象,如图所示,
由图可知,.【巩固练习1】(2024·广东梅州·二模)三个函数,,的零点分别为,则之间的大小关系为(
)A. B.C. D.【答案】B【分析】先判断各函数的单调性,再根据零点的存在性定理求出函数零点的范围,即可得出答案.【详解】因为函数,,,都是增函数,所以函数,,均为增函数,因为,所以函数的零点在上,即,因为,所以函数的零点在上,即,因为,所以函数的零点在上,即,综上,.【巩固练习2】(2024·海南·模拟预测)已知正实数满足,则(
)A. B.C. D.【答案】D【分析】利用数形结合法,根据题意结合图象交点分析判断.本号资料全部来源于#微信公众号:数学第六*感【详解】因为,即,由题意可知:为与的交点横坐标;为与的交点横坐标;为与的交点横坐标;在同一平面直角坐标系中作出的图象,
由图可得:.【巩固练习3】设正实数分别满足,则的大小关系为(
)A. B.C. D.【答案】B【分析】作出的图像,利用图像和图像交点的横坐标比较大小即可.【详解】由已知可得,,,作出的图像如图所示:它们与交点的横坐标分别为,由图像可得【题型8】求零点的和结合函数的对称性以及交点个数,数形结合(2024·青海西
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年巴西总统大选前瞻:政治格局与影响
- 掌握Zemax:2024年光学系统创新实践教程
- 语文八年级上册第三单元测试卷带答案
- 彩虹色的花绘本故事
- 通史版2025届高考历史统考一轮复习第23讲课题1社会主义由理论到实践-马克思主义的诞生和发展学案含解析
- 2024-2025学年初中物理电学同步专题点拨与强化专题2电路的识别连接与设计专项突破含解析
- 八年级物理全册第十一章小粒子与大宇宙11.1走进微观提高练习新版沪科版
- 统考版2025届高考英语一轮复习课时提能练4必修1Unit4Earthquakes含解析新人教版
- 2024高考历史一轮复习专题十古代中国的思想科学技术与文学艺术第23讲“百家争鸣”和汉代儒学课时作业含解析人民版
- 2024-2025学年高中历史第七单元世界大战十月革命与国际秩序的演变第15课十月革命的胜利与苏联的社会主义实践学案含解析新人教版必修中外历史纲要下
- 气排球记录方法五人制2017年5月9日
- 信用管理师(三级)理论考试题库(300题)
- 医学创新与科学研究知到章节答案智慧树2023年岳阳职业技术学院
- 社会体育导论教学教案
- 厂房物业管理服务合同
- 新生适应性成长小组计划书
- 08SS523建筑小区塑料排水检查井
- 教学评一体化的教学案例 课件
- 父亲去世讣告范文(通用12篇)
- 人教版八年级上Unit 2How often do you exercise Section A(Grammar Focus-3c)
- 导读工作总结优秀范文5篇
评论
0/150
提交评论