![湖南省长沙广益中学2024届中考数学最后一模试卷含解析_第1页](http://file4.renrendoc.com/view14/M05/17/13/wKhkGWb0vp2AUNfJAAIbOx1syLs784.jpg)
![湖南省长沙广益中学2024届中考数学最后一模试卷含解析_第2页](http://file4.renrendoc.com/view14/M05/17/13/wKhkGWb0vp2AUNfJAAIbOx1syLs7842.jpg)
![湖南省长沙广益中学2024届中考数学最后一模试卷含解析_第3页](http://file4.renrendoc.com/view14/M05/17/13/wKhkGWb0vp2AUNfJAAIbOx1syLs7843.jpg)
![湖南省长沙广益中学2024届中考数学最后一模试卷含解析_第4页](http://file4.renrendoc.com/view14/M05/17/13/wKhkGWb0vp2AUNfJAAIbOx1syLs7844.jpg)
![湖南省长沙广益中学2024届中考数学最后一模试卷含解析_第5页](http://file4.renrendoc.com/view14/M05/17/13/wKhkGWb0vp2AUNfJAAIbOx1syLs7845.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙广益中学2024届中考数学最后一模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A. B.2 C. D.2.如图,,则的度数为()A.115° B.110° C.105° D.65°3.如图所示,如果将一副三角板按如图方式叠放,那么∠1等于()A. B. C. D.4.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是()A. B. C. D.5.某校九年级(1)班全体学生实验考试的成绩统计如下表:成绩(分)24252627282930人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班考试成绩的众数是28分C.该班考试成绩的中位数是28分D.该班考试成绩的平均数是28分6.已知二次函数图象上部分点的坐标对应值列表如下:x…-3-2-1012…y…2-1-2-127…则该函数图象的对称轴是()A.x=-3 B.x=-2 C.x=-1 D.x=07.计算的正确结果是()A. B.- C.1 D.﹣18.若代数式2x2+3x﹣1的值为1,则代数式4x2+6x﹣1的值为()A.﹣3 B.﹣1 C.1 D.39.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份10.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. B. C. D.11.不等式2x﹣1<1的解集在数轴上表示正确的是()A. B.C. D.12.下列方程中有实数解的是()A.x4+16=0 B.x2﹣x+1=0C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为______.14.如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.15.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.16.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.17.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.18.已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:上表中众数m的值为;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.20.(6分)P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”(1)⊙O的半径为6,OP=1.①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=x+b上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出b的取值范围_____.21.(6分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.22.(8分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.23.(8分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.24.(10分)如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30°,B点的俯角为10°,求建筑物AB的高度(结果保留小数点后一位).参考数据sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.25.(10分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|26.(12分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下.成绩/分120﹣111110﹣101100﹣9190以下成绩等级ABCD请根据以上信息解答下列问题:(1)这次统计共抽取了名学生的数学成绩,补全频数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有多少人?(3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A等级学生数可提高40%,B等级学生数可提高10%,请估计经过训练后九年级数学成绩在B等级以上(含B等级)的学生可达多少人?27.(12分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=.故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.2、A【解析】
根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.【详解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°−65°=115°,故选:A.【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.3、B【解析】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.4、A【解析】
由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=->0,即可进行判断.【详解】点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,∴方程ax2+(b-1)x+c=0有两个正实数根.∴函数y=ax2+(b-1)x+c与x轴有两个交点,又∵->0,a>0∴-=-+>0∴函数y=ax2+(b-1)x+c的对称轴x=->0,∴A符合条件,故选A.5、D【解析】
直接利用众数、中位数、平均数的求法分别分析得出答案.【详解】解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;B、该班考试成绩的众数是28分,此选项正确,不合题意;C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题意;D、该班考试成绩的平均数是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),故选项D错误,符合题意.故选D.【点睛】此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键.6、C【解析】
由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.【详解】解:∵x=-2和x=0时,y的值相等,∴二次函数的对称轴为,故答案为:C.【点睛】本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.7、D【解析】
根据有理数加法的运算方法,求出算式的正确结果是多少即可.【详解】原式故选:D.【点睛】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同1相加,仍得这个数.8、D【解析】
由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1计算可得.【详解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,则4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本题答案为:D.【点睛】本题主要考查代数式的求值,运用整体代入的思想是解题的关键.9、B【解析】
解:各月每斤利润:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利润最大,故选B.10、B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程11、D【解析】
先求出不等式的解集,再在数轴上表示出来即可.【详解】移项得,2x<1+1,合并同类项得,2x<2,x的系数化为1得,x<1.在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键.12、C【解析】
A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.【详解】A.中△=02﹣4×1×16=﹣64<0,方程无实数根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;C.x=﹣1是方程的根;D.当x=1时,分母x2-1=0,无实数根.故选:C.【点睛】本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】
首先求出一次函数y=kx+3与y轴的交点坐标;由于函数与x轴的交点的纵坐标是0,可以设横坐标是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函数的解析式y=kx+3,从而求出k的值.【详解】在y=kx+3中令x=0,得y=3,则函数与y轴的交点坐标是:(0,3);设函数与x轴的交点坐标是(a,0),根据勾股定理得到a2+32=25,解得a=±4;当a=4时,把(4,0)代入y=kx+3,得k=;当a=-4时,把(-4,0)代入y=kx+3,得k=;故k的值为或【点睛】考点:本体考查的是根据待定系数法求一次函数解析式解决本题的关键是求出函数与y轴的交点坐标,然后根据勾股定理求得函数与x轴的交点坐标,进而求出k的值.14、1.【解析】
由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案.【详解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案为:1.【点睛】此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质.注意掌握线段的对应关系是解此题的关键.15、36°【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.16、1【解析】
首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案为1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.17、.【解析】
根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,∴从中任意摸出一个球恰好是红球的概率为:,故答案为.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.18、4π【解析】根据扇形的面积公式可得:扇形AOB的面积为,故答案为4π.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)18;(2)中位数;(3)100名.【解析】【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【详解】(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.20、(1)①20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明见解析;(2)点P关于⊙O的“幂值”为r2﹣d2;(3)﹣3≤b≤.【解析】【详解】(1)①如图1所示:连接OA、OB、OP.由等腰三角形的三线合一的性质得到△PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;②过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′.先证明△APA′∽△B′PB,依据相似三角形的性质得到PA•PB=PA′•PB′从而得出结论;(2)连接OP、过点P作AB⊥OP,交圆O与A、B两点.由等腰三角形三线合一的性质可知AP=PB,然后在Rt△APO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CP⊥AB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围.【详解】(1)①如图1所示:连接OA、OB、OP,∵OA=OB,P为AB的中点,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB==2,∴PA=PB=2,∴⊙O的“幂值”=2×2=20,故答案为:20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明如下:如图,AB为⊙O中过点P的任意一条弦,且不与OP垂直,过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴,∴PA•PB=PA′•PB′=20,∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值;(2)如图3所示;连接OP、过点P作AB⊥OP,交圆O与A、B两点,∵AO=OB,PO⊥AB,∴AP=PB,∴点P关于⊙O的“幂值”=AP•PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴关于⊙O的“幂值”=r2﹣d2,故答案为:点P关于⊙O的“幂值”为r2﹣d2;(3)如图1所示:过点C作CP⊥AB,,∵CP⊥AB,AB的解析式为y=x+b,∴直线CP的解析式为y=﹣x+.联立AB与CP,得,∴点P的坐标为(﹣﹣b,+b),∵点P关于⊙C的“幂值”为6,∴r2﹣d2=6,∴d2=3,即(﹣﹣b)2+(+b)2=3,整理得:b2+2b﹣9=0,解得b=﹣3或b=,∴b的取值范围是﹣3≤b≤,故答案为:﹣3≤b≤.【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键.21、(1)不可能;(2).【解析】
(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1)详见解析(2)【解析】
设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出树形图,再根据概率公式求解即可.【详解】(1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出如下树形图:由上图可知,上述试验共有8种等可能结果;(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴P(一次打开锁)=.【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.23、.【解析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,∴P(A,C两个区域所涂颜色不相同)=.考点:1.画树状图或列表法;2.概率.24、建筑物AB的高度约为30.3m.【解析】分析:过点D作DE⊥AB,利用解直角三角形的计算解答即可.详解:如图,根据题意,BC=2,∠DCB=90°,∠ABC=90°.过点D作DE⊥AB,垂足为E,则∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四边形DCBE为矩形,∴DE=BC=2.在Rt△ADE中,tan∠ADE=,∴AE=DE•tan30°=.在Rt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度农业现代化项目可研报告咨询服务合同
- 2025年度智能会场速记服务合同及数据保护协议
- 2025年度金融产品销售代理合同-@-1
- 2025年度水果市场分析与预测服务合同
- 2025年度家庭装修工程监理服务合同
- 2025年建筑防水材料运输质量保证合同
- 2025年度健康医疗服务代理居间合同协议
- 2025年度绿色建材管件采购及安装服务合同
- 2025年度二零二五酒吧场地租赁与广告位使用权转让合同
- 2025年度网络安全技术服务合同范本-@-5
- 2025年宽带研究分析报告
- 建筑与市政工程第三方质量安全巡查方案
- 牧场物语-矿石镇的伙伴们-完全攻略
- 供电公司一把手讲安全
- 共板法兰风管制作安装
- 2020年血液净化感染控制操作规程课件
- 计算机辅助工艺设计课件
- 汽车销售流程与技巧培训课件
- 管理学专业:管理基础知识试题库(附含答案)
- 广西基本医疗保险门诊特殊慢性病申报表
- 部编人教版五年级下册小学语文第八单元全套教学课件 (含口语、习作及园地课件)
评论
0/150
提交评论