2024-2025学年湖南省长沙市岳麓区长郡梅溪湖数学九上开学调研模拟试题【含答案】_第1页
2024-2025学年湖南省长沙市岳麓区长郡梅溪湖数学九上开学调研模拟试题【含答案】_第2页
2024-2025学年湖南省长沙市岳麓区长郡梅溪湖数学九上开学调研模拟试题【含答案】_第3页
2024-2025学年湖南省长沙市岳麓区长郡梅溪湖数学九上开学调研模拟试题【含答案】_第4页
2024-2025学年湖南省长沙市岳麓区长郡梅溪湖数学九上开学调研模拟试题【含答案】_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年湖南省长沙市岳麓区长郡梅溪湖数学九上开学调研模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)函数y=中自变量x的取值范围是()A.x≠2 B.x≠0 C.x≠0且x≠2 D.x>22、(4分)在以x为自变量,y为函数的关系式y=5πx中,常量为()A.5 B.π C.5π D.πx3、(4分)的平方根是()A. B. C. D.4、(4分)如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC=16,则MD等于()A.4 B.3 C.2 D.15、(4分)若分式的值为0,则x的值为A.3 B. C.3或 D.06、(4分)数据-2,-1,0,1,2的方差是()A.0 B. C.2 D.47、(4分)将函数的图象向上平移5个单位长度,得到的函数解析式为()A. B.C. D.8、(4分)下列四边形中,对角线相等且互相垂直平分的是(

)A.平行四边形 B.正方形 C.等腰梯形 D.矩形二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若分式的值为0,则的值为____.10、(4分)直线与轴的交点坐标是________________.11、(4分)方程的解是_____.12、(4分)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=____.13、(4分)如图所示,某人在D处测得山顶C的仰角为30°,向前走200米来到山脚A处,测得山坡AC的坡度i=1∶0.5,则山的高度为____________米.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.请说明四边形BFDE是平行四边形.15、(8分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.16、(8分)如图,在平面直角坐标系中,的三个顶点分别是、、.(1)画出关于点成中心对称的△;平移,若点的对应点的坐标为,画出平移后对应的△;(2)△和△关于某一点成中心对称,则对称中心的坐标为.17、(10分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?18、(10分)为引导学生广泛阅读古今文学名著,某校开展了读书活动.学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:学生平均每周阅读时间频数分布表平均每周阅读时间x(时)频数频率0≤x<2100.0252≤x<4600.1504≤x<6a0.2006≤x<8110b8≤x<101000.25010≤x≤12400.100合计4001.000请根据以上信息,解答下列问题;(1)在频数分布表中,a=______,b=______;(2)补全频数分布直方图;(3)如果该校有1600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有多少人?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)分解因式:=_________________________.20、(4分)如图,在▱ABCD中,∠ADO=30°,AB=8,点A的坐标为(﹣3,0),则点C的坐标为_____.21、(4分)将函数的图象向上平移3个单位长度,得到的函数图象的解析式为______.22、(4分)已知Rt△ABC,∠ABC=90°,小明按如下步骤作图,①以A为圆心,BC长为半径作弧,以C为圆心,AB长为半径作弧,两弧相交于点D;②连接DA,DC,则四边形ABCD为___________.23、(4分)分解因式2x3y﹣8x2y+8xy=_____.二、解答题(本大题共3个小题,共30分)24、(8分)矩形纸片ABCD,AB=4,BC=12,E、F分别是AD、BC边上的点,ED=1.将矩形纸片沿EF折叠,使点C落在AD边上的点G处,点D落在点H处.(1)矩形纸片ABCD的面积为(2)如图1,连结EC,四边形CEGF是什么特殊四边形,为什么?(1)M,N是AB边上的两个动点,且不与点A,B重合,MN=1,求四边形EFMN周长的最小值.(计算结果保留根号)25、(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,在平面直角坐标系中如图所示:完成下列问题:(1)画出△ABC绕点O逆时针旋转90∘后的△ABC;点B1的坐标为___;(2)在(1)的旋转过程中,点B运动的路径长是___(3)作出△ABC关于原点O对称的△ABC;点C的坐标为___.26、(12分)某中学开学初到商场购买、两种品牌的足球,购买种品牌的足球50个,种品牌的足球25个,共花费4500元,已知购买一个种品牌的足球比购买一个种品牌的足球少30元.(1)求购买一个种品牌、一个种品牌的足球各需多少钱.(2)学校为了响应“足球进校园”的号召,决定再次购进、两种品牌足球共50个,正好赶上商场对商品价格进行调整,品牌的足球售价上涨4元,品牌足球按原售价的9折出售,如果学校第二次购买足球的总费用不超过第一次花费的,且保证品牌足球不少于23个,则学校有几种购买方案?(3)求出学校在第二次购买活动中最多需要多少钱?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

根据分母不为0列式求值即可.【详解】由题意得x﹣1≠0,解得:x≠1.故选:A.此题主要考查函数的自变量取值,解题的关键是熟知分母不为零.2、C【解析】

根据常量的定义解答即可,常量是指在某一个变化过程中,固定不变的量.【详解】在以x为自变量,y为函数的关系式y=5πx中,常量为5π,故选:C.考查了变量关系中的常量的定义,熟记常量定义是解题的关键,注意π是常量.3、B【解析】

根据开平方的意义,可得一个数的平方根.【详解】解:9的平方根是±3,

故选:B.本题考查了平方根,乘方运算是解题关键,注意平方根是两个互为相反的数.4、C【解析】

延长BD交AC于H,根据等腰三角形的性质得到BD=DH,AH=AB=12,根据三角形中位线定理计算即可.【详解】延长BD交AC于H,∵AD平分∠BAC,BD⊥AD,∴BD=DH,AH=AB=12,∴HC=AC﹣AH=4,∵M是BC中点,BD=DH,∴MD=12CH=2故选C.本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.5、A【解析】

根据分式的值为零的条件可以求出x的值.【详解】由分式的值为零的条件得x-1=2,且x+1≠2,解得x=1.故选A.本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.6、C【解析】

先求出这组数据的平均数,再根据方差的公式进行计算即可.【详解】解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,∴数据﹣2,﹣1,0,1,2的方差是:.故选C.本题考查方差的计算.7、A【解析】

根据函数图象上加下减,可得答案.【详解】由题意,得y=2x+5,即y=2x+5,故选:A.此题考查一次函数图象与几何变换,解题关键在于掌握平移法则8、B【解析】

解:对角线相等且互相垂直平分的四边形是正方形,故选B.本题考查等腰梯形的性质;平行四边形的性质;矩形的性质;正方形的性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、2【解析】

先进行因式分解和约分,然后求值确定a【详解】原式=∵值为0∴a-2=0,解得:a=2故答案为:2本题考查解分式方程,需要注意,此题a不能为-2,-2为分式方程的增根,不成立10、【解析】

根据一次函数的性质,与轴的交点即横坐标为0,代入即可得解.【详解】根据题意,得当时,,即与轴的交点坐标是故答案为.此题主要考查一次函数的性质,熟练掌握,即可解题.11、x=﹣1.【解析】

把方程两边平方后求解,注意检验.【详解】把方程两边平方得x+2=x2,整理得(x﹣2)(x+1)=0,解得:x=2或﹣1,经检验,x=﹣1是原方程的解.故本题答案为:x=﹣1.本题考查无理方程的求法,注意无理方程需验根.12、-1【解析】

设点A(x,),表示点B的坐标,然后求出AB的长,再根据平行四边形的面积公式列式计算即可得解.【详解】设点A(x,),则B(,),∴AB=x-,则(x-)•=5,k=-1.故答案为:-1.本题考查了反比例函数系数的几何意义,用点A,B的横坐标之差表示出AB的长度是解题的关键.13、【解析】本题是把实际问题转化为解直角三角形问题,由题意,已知DA=200,∠CDB=30°,CB:AB=1:0.5,∠CBD=90°,求CB.设AB=x,则CB=2x,由三角函数得:=tan30°,即=,求出x,从求出CB.即求出山的高度.解:已知山坡AC的坡度i=1:0.5,∴设AB=x,则CB=2x,又某人在D处测得山顶C的仰角为30°,即,∠CDB=30°,∴=tan30°,即=,解得:x=,∴CB=2x=,故答案为.三、解答题(本大题共5个小题,共48分)14、证明见解析.【解析】

连接BD,利用对角线互相平分来证明即可.【详解】证明:连接BD,交AC于点O.∵四边形ABCD是平行四边形∴OA=OCOB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.15、DE=BF,DE∥BF.【解析】

由平行四边形的性质可得AD=BC,AD∥BC,由“SAS”可证△ADE≌△CBF,即可得结论.【详解】解:DE∥BF

DE=BF.理由如下:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠ACB,且AE=CF,AD=BC,∴△ADE≌△CBF(SAS),∴DE=BF,∠AED=∠BFC,∴∠DEC=∠AFB,∴DE∥BF.∴DE=BF,DE∥BF.本题考查了平行四边形的性质,全等三角形的判定和性质,熟练运用平行四边形的性质是本题的关键.16、(1)画图见解析;(2)(2,-1).【解析】试题分析:(1)、根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)、根据中心对称的性质,连接两组对应点的交点即为对称中心.试题解析:(1)、△A1B1C如图所示,△A2B2C2如图所示;(2)、如图,对称中心为(2,﹣1).考点:(1)、作图-旋转变换;(2)、作图-平移变换.17、(1)每台电冰箱的进价2000元,每台空调的进价1600元.(2)此时应购进电冰箱33台,则购进空调67台.【解析】试题分析:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元,根据:“用8000元购进电冰箱的数量与用6400元购进空调的数量相等”列分式方程求解可得;(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据:总利润=冰箱每台利润×冰箱数量+空调每台利润×空调数量,列出函数解析式,结合x的范围和一次函数的性质可知最值情况.解:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元依题意得,,解得:m=2000,经检验,m=2000是原分式方程的解,∴m=2000;∴每台电冰箱的进价2000元,每台空调的进价1600元.(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据题意得,总利润W=100x+150(100﹣x)=﹣50x+15000,∵﹣50<0,∴W随x的增大而减小,∵33≤x≤40,∴当x=33时,W有最大值,即此时应购进电冰箱33台,则购进空调67台.18、(1)80,0.1;(2)见详解;(3)1000人【解析】

(1)求出总人数,总人数乘以0.2即可得到a,110除以总人数即可得到b.(2)根据(1)中计算和表中信息画图.(3)根据用样本估计总体的方法求解.【详解】解:(1)10÷0.025=400人;a=400×0.2=80人,b==0.1;故答案为80,0.1.(2)如图:(3)1600×(0.1+0.25+0.1)=1000人.本题考查了频数分布直方图、频数分布表,两图结合是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、.【解析】

试题分析:==.故答案为.考点:提公因式法与公式法的综合运用.20、(8,33)【解析】

根据30度直角三角形的性质得到AD,由勾股定理得到DO,再根据平行线的性质即可得到答案.【详解】∵点A坐标为(﹣3,0)∴AO=3∵∠ADO=30°,AO⊥DO∴AD=2AO=6,∵DO=A∴DO=33∴D(0,33)∵四边形ABCD是平行四边形∴AB=CD=8,AB∥CD∴点C坐标(8,33)故答案为(8,33)本题考查30度直角三角形的性质、勾股定理和平行线的性质,解题的关键是掌握30度直角三角形的性质、勾股定理和平行线的性质.21、【解析】

根据一次函数的图像平移的特点即可求解.【详解】函数的图象向上平移3个单位长度,得到的函数图象的解析式为+3,∴函数为此题主要考查一次函数的性质,解题的关键是熟知一次函数平移的特点.22、矩形【解析】

直接利用小明的作图方法得出四边形ABCD是平行四边形,进而利用矩形的判定方法得出答案.【详解】解:根据小明的作图方法可知:AD=BC,AB=DC,∠B=90°,∵AD=BC,AB=DC,

∴四边形ABCD是平行四边形,

∵∠B=90°,

∴平行四边形ABCD是矩形.

故答案为:矩形.本题主要考查了复杂作图,正确掌握平行四边形的判定方法和矩形的判定方法是解题关键.23、2xy(x﹣2)2【解析】

原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=2xy(x2﹣4x+4)=2xy(x﹣2)2,故答案为:2xy(x﹣2)2此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.二、解答题(本大题共3个小题,共30分)24、(1)2;(2)四边形CEGF是菱形,理由见详解;(1)四边形EFMN周长的最小值为.【解析】

(1)矩形面积=长×宽,即可得到答案,(2)利用对角线互相垂直平分的四边形是菱形进行证明,先证对角线相互垂直,再证对角线互相平分.(1)明确何时四边形的周长最小,利用对称、勾股定理、三角形相似,分别求出各条边长即可.【详解】解:(1)S矩形ABCD=AB•BC=12×4=2,故答案为:2.(2)四边形CEGF是菱形,证明:连接CG交EF于点O,由折叠得:EF⊥CG,GO=CO,∵ABCD是矩形,∴AD∥BC,∴∠OGE=∠OCF,∠GEO=∠CFO∴△GOE≌△COF(AAS),∴OE=OF∴四边形CEGF是菱形.因此,四边形CEGF是菱形.(1)作F点关于点B的对称点F1,则NF1=NF,当NF1∥EM时,四边形EFMN周长最小,设EC=x,由(2)得:GE=GF=FC=x,在Rt△CDE中,∵ED2+DC2=EC2,∴12+42=EC2,∴EC=5=GE=FC=GF,在Rt△GCD中,,∴OC=GO=,在Rt△COE中,,∴EF=2OE=,当NF1∥EM时,易证△EAM∽△F1BN,∴,设AM=y,则BN=4-1-y=1-y,∴,解得:,此时,AM=,BN=,由勾股定理得:,,∴四边形EFMN的周长为:故四边形EFMN周长的最小值为:.考查矩形的性质、菱形的判定和性质、对称及三角形相似的性质和勾股定理等知识,综合性很强,利用的知识较多,是一道较难得题目.25、(1)图见解析,;(2);(3)图见解析,(2,3).【解析】

(1)如图,画出△ABC绕原点O逆时针旋转90°的△ABC;(2)如图,根据弧长公式,计算点B运动的路径长;画出△ABC后的△ABC;(3)如图,画出△ABC关于原点O对称的△ABC.【详解】(1)如图所示:点B1的坐标为(3,−4);故答案为:(3,−4)(2)由勾股定理得:OB==5,∴故答案为:;(3)如图所示,点C2的坐标为(2,3)故答案为:(2,3).此题考查作图-旋转变换,掌握作图法则是解题关键26、(1)购买一个A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论