上海市黄浦区名校2025届数学八年级第一学期期末达标检测模拟试题含解析_第1页
上海市黄浦区名校2025届数学八年级第一学期期末达标检测模拟试题含解析_第2页
上海市黄浦区名校2025届数学八年级第一学期期末达标检测模拟试题含解析_第3页
上海市黄浦区名校2025届数学八年级第一学期期末达标检测模拟试题含解析_第4页
上海市黄浦区名校2025届数学八年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市黄浦区名校2025届数学八年级第一学期期末达标检测模拟试题标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.现用张铁皮做盒子,每张铁皮做个盒身或做个盒底,而一个盒身与两个盒底配成一个盒子,设用张铁皮做盒身,张铁皮做盒底,则可列方程组为()A. B.C. D.2.如图,分别以的边,所在直线为对称轴作的对称图形和,,线段与相交于点,连接、、、.有如下结论:①;②;③平分;其中正确的结论个数是()A.0个 B.3个 C.2个 D.1个3.如图,在△ABC中,点D是∠ABC和∠ACB的角平分线的交点,∠A=80°,∠ABD=30°,则∠DCB为()A.25° B.20° C.15° D.10°4.已知三角形两边的长分别是5和11,则此三角形第三边的长可能是()A.5 B.15 C.3 D.165.如图,中,,,为中点,,给出四个结论:①;②;③;④,其中成立的有()A.4个 B.3个 C.2个 D.1个6.如图,在直角△ABC中,,AB=AC,点D为BC中点,直角绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④ B.②③④ C.①②③ D.①②③④7.下列多项式:①②③④,其中能用完全平方公式分解因式的有()A.1个 B.2个 C.3个 D.4个8.一个直角三角形的两条边长分别为3cm,4cm,则该三角形的第三条边长为()A.7cm B.5cm C.7cm或5cm D.5cm或9.如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A.4 B.3 C.2 D.110.如图,在等边中,平分交于点,点E、F分别是线段BD,BC上的动点,则的最小值等于()A. B. C. D.二、填空题(每小题3分,共24分)11.已知(a−1,5)和(2,b−1)关于x轴对称,则的值为_________.12.如图,在中,,按以下步骤作图:分别以点和点为圆心,大于一半长为半径作画弧,两弧相交于点和点,过点作直线交于点,连接,若,,则的周长为_____________________.13.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=_______14.如图所示,在Rt△ABC中,∠C=90°,∠A=15°,将△ABC翻折,是顶点A与顶点B重合,折痕为MH,已知AH=2,则BC等于_____.15.化简得.16.已知(x+y+2)20,则的值是____.17.计算:_______________.18.如图,在等边中,将沿虚线剪去,则___°.三、解答题(共66分)19.(10分)计算下列各题(1)(2)20.(6分)如图1,在△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,AB=DE,BE∥AC.(1)求证:△ABC≌△DEB;(1)连结AD、AE、CE,如图1.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.21.(6分)如图1,是直角三角形,,的角平分线与的垂直平分线相交于点.(1)如图2,若点正好落在边上.①求的度数;②证明:.(2)如图3,若点满足、、共线.线段、、之间是否满足,若满足请给出证明;若不满足,请说明理由.22.(8分)化简求值:(1)已知,求的值.(2)已知,求代数式的值.23.(8分)如图,在平面直角坐标系中,点,点.(1)①画出线段关于轴对称的线段;②在轴上找一点使的值最小(保留作图痕迹);(2)按下列步骤,用不带刻度的直尺在线段找一点使.①在图中取点,使得,且,则点的坐标为___________;②连接交于点,则点即为所求.24.(8分)观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c.根据你发现的规律,请写出:(1)当a=19时,求b,c的值;(2)当a=2n+1时,求b,c的值;(3)用(2)的结论判断15,111,112,是否为一组勾股数,并说明理由.25.(10分)在如图所示的平面直角坐标系中,网格小正方形的边长为1.(1)作出关于轴对称的,并写出点的坐标;(2)是轴上的动点,利用直尺在图中找出使周长最短时的点,保留作图痕迹,此时点的坐标是______26.(10分)如图,在中,,.(1)如图1,点在边上,,,求的面积.(2)如图2,点在边上,过点作,,连结交于点,过点作,垂足为,连结.求证:.

参考答案一、选择题(每小题3分,共30分)1、A【分析】此题中的等量关系有:①共有190张铁皮;②做的盒底数等于盒身数的2倍时才能正好配套.由此可得答案.【详解】解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y.列方程组为.故选:A.【点睛】本题考查的是二元一次方程组的应用,找准等量关系是解应用题的关键.2、B【分析】根据轴对称的性质以及全等三角形的性质对每个结论进行一一判断即可.【详解】解:∵△ABD和△ACE是△ABC的轴对称图形,

∴∠BAD=∠CAE=∠BAC,AB=AE,AC=AD,

∴∠EAD=3∠BAC−360°=3×150°−360°=90°,故①正确;

∴∠ABE=∠CAD=×(360°−90°−150°)=60°,

由翻折的性质得,∠AEC=∠ABD=∠ABC,

又∵∠EPO=∠BPA,

∴∠BOE=∠BAE=60°,故②正确;

在△ACE和△ADB中,,∴△ACE≌△ADB,

∴S△ACE=S△ADB,BD=CE,

∴BD边上的高与CE边上的高相等,

即点A到∠BOC两边的距离相等,

∴OA平分∠BOC,故③正确;综上所述,结论正确的是①②③,

故选:B.【点睛】本题考查轴对称的性质、全等三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、B【分析】由BD是∠ABC的角平分线,可得∠ABC=2∠ABD=60°;再根据三角形的内角和求得∠ACB=40°;再由角平分线的定义确定∠DCB的大小即可.【详解】解:∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=2×30°=60°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣80°﹣60°=40°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,故选B.【点睛】本题考查了三角形的内角和和三角形角平分线的相关知识,解答本题的关键在于所学知识的活学活用.4、B【分析】根据三角形的三边关系,求出第三边的长的取值范围,即可得出结论.【详解】解:∵三角形两边的长分别是5和11,∴11-5<第三边的长<11+5解得:6<第三边的长<16由各选项可知,符合此范围的选项只有B故选B.【点睛】此题考查的是根据三角形两边的长,求第三边的长的取值范围,掌握三角形的三边关系是解决此题的关键.5、A【分析】根据等腰直角三角形的性质,得∠B=45°,∠BAP=45°,即可判断①;由∠BAP=∠C=45°,AP=CP,∠EPA=∠FPC,得∆EPA≅∆FPC,即可判断②;根据∆EPA≅∆FPC,即可判断③;由,即可判断④.【详解】∵中,,,为中点,∴∠B=45°,∠BAP=∠BAC=×90°=45°,即:,∴①成立;∵,,为中点,∴∠BAP=∠C=45°,AP=CP=BC,AP⊥BC,又∵,∴∠EPA+∠APF=∠FPC+∠APF=90°,∴∠EPA=∠FPC,∴∆EPA≅∆FPC(ASA),∴,②成立;∵∆EPA≅∆FPC,∴∴③成立,∵∆EPA≅∆FPC,∴,∴④成立.故选A.【点睛】本题主要考查等腰直角三角形的性质以及三角形全等的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键.6、C【分析】根据等腰直角三角形的性质可得∠CAD=∠B=45°,根据同角的余角相等求出∠ADF=∠BDE,然后利用“角边角”证明△BDE和△ADF全等,判断出③正确;根据全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,判断出①正确;再求出AE=CF,判断出②正确;根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出④错误.【详解】∵∠B=45°,AB=AC,

∴△ABC是等腰直角三角形,

∵点D为BC中点,

∴AD=CD=BD,AD⊥BC,∠CAD=45°,

∴∠CAD=∠B,

∵∠MDN是直角,

∴∠ADF+∠ADE=90°,

∵∠BDE+∠ADE=∠ADB=90°,

∴∠ADF=∠BDE,

在△BDE和△ADF中,,

∴△BDE≌△ADF(ASA),故③正确;

∴DE=DF、BE=AF,

又∵∠MDN是直角,

∴△DEF是等腰直角三角形,故①正确;

∵AE=AB-BE,CF=AC-AF,

∴AE=CF,故②正确;

∵BE+CF=AF+AE>EF,

∴BE+CF>EF,

故④错误;

综上所述,正确的结论有①②③;

故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、同角的余角相等的性质、三角形三边的关系;熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.7、B【解析】试题分析:①,不能分解,错误;②;③,不能分解,错误;④.其中能用完全平方公式分解因式的有2个,为②④.故选B.考点:因式分解-运用公式法.8、D【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为,

(1)若4是直角边,则第三边是斜边,由勾股定理得:

,∴;

(2)若4是斜边,则第三边为直角边,由勾股定理得:

,∴;

综上:第三边的长为5或.

故选:D.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.9、B【分析】根据题意逐个证明即可,①只要证明,即可证明;②利用三角形的外角性质即可证明;④作于,于,再证明即可证明平分.【详解】解:∵,∴,即,在和中,,∴,∴,①正确;∴,由三角形的外角性质得:∴°,②正确;作于,于,如图所示:则°,在和中,,∴,∴,∴平分,④正确;正确的个数有3个;故选B.【点睛】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.10、A【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在BA上截取BG=BF,

∵∠ABC的平分线交AC于点D,

∴∠GBE=∠FBE,

在△GBE与△FBE中,∴△GBE≌△FBE(SAS),

∴EG=EF.

∴CE+EF=CE+EG≥CG.

如下图示,当有最小值时,即当CG是点C到直线AB的垂线段时,的最小值是又∵是等边三角形,是的角平分线,∴,∴,故选:A.【点睛】本题考查了轴对称的应用,通过构造全等三角形,把进行转化是解题的关键.二、填空题(每小题3分,共24分)11、-1【分析】根据两点关于x轴对称的坐标的关系,得a﹣1=2,b﹣1=﹣5,求出a,b的值,进而即可求解.【详解】∵和关于x轴对称,∴解得:,∴.故答案为:﹣1.【点睛】本题主要考查平面直角坐标系中,两点关于x轴对称坐标的关系,掌握两点关于x轴对称,横坐标相等,纵坐标互为相反数,是解题的关键.12、1【分析】利用基本作图可以判定MN垂直平分BC,则DC=DB,然后利用等线段代换得到的周长=AB+AC,再把,代入计算即可.【详解】解:由作法得MN垂直平分BC,则DC=DB,故答案为:1.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.13、30°【解析】由折叠的性质可知∠B=∠AEB,因为E点在AC的垂直平分线上,故EA=EC,可得∠EAC=∠C,根据外角的性质得∠B=∠AEB=∠EAC+∠C=2∠C,在Rt△ABC中,∠B+∠C=90°,由此可求∠C.解:由折叠的性质,得∠B=∠AEB,∵E点在AC的垂直平分线上,∴EA=EC,∴∠EAC=∠C,由外角的性质,可知∠B=∠AEB=∠EAC+∠C=2∠C,在Rt△ABC中,∠B+∠C=90°,即2∠C+∠C=90°,解得∠C=30°.故本题答案为:30°.本题考查了折叠的性质,线段垂直平分线的性质.关键是把条件集中到直角三角形中求解.14、1.【分析】根据折叠的性质得到HB=HA,根据三角形的外角的性质得到∠CHB=30°,根据直角三角形的性质计算即可.【详解】由折叠的性质可知,HB=HA=2,∴∠HAB=∠HBA=15°,∴∠CHB=30°,∵∠C=90°,∴BC=BH=1,故答案为:1.【点睛】本题考查的是翻转变换的性质,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.15、.【解析】试题分析:原式=.考点:分式的化简.16、.【分析】利用平方和算术平方根的意义确定(x+y+2)2⩾0,,从而确定x+y+2=0且x−y−4=0,建立二元一次方程组求出x和y的值,再代入求值即可.【详解】解:∵(x+y+2)2≥0,0,且(x+y+2)20,∴(x+y+2)2=0,0,即解得:则.故答案为:.【点睛】本题重点考查偶次方和算术平方根的非负性,是一种典型的“0+0=0”的模式题型,需重点掌握;另外此题结合了二元一次方程组的运算,需熟练掌握“加减消元法”和“代入消元法”这两个基本的运算方法.17、3【分析】根据负整数指数幂的定义及任何非0数的0次幂为1求解即可.【详解】故答案为:3【点睛】本题考查的是负整数指数幂的定义及0指数幂,掌握及任何非0数的0次幂为1是关键.18、240【分析】根据等边三角形的性质可得,再让四边形的内角和减去即可求得答案.【详解】∵是等边三角形∴∴∴故答案是:【点睛】本题考查了等边三角形的性质,三角形的内角和、外角和定理以及四边形的内角和是.因为涉及到的知识点较多,所以解题方法也较多,需注意解题过程要规范、解题思路要清晰.三、解答题(共66分)19、(1);(2)【分析】(1)二次根式混合预算,先做乘法,化简二次根式,负整数指数幂,然后合并同类二次根式;(2)多项式乘多项式,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.【详解】解:(1)(2)【点睛】本题考查二次根式的混合运算,整式乘法,掌握运算顺序和计算法则,正确计算是解题关键.20、(1)详见解析;(1)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(1)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(1)①由(1)得:△ABC≌△DEB∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.21、(1)①;②见解析;(2)满足,证明见解析【分析】(1)①由角平分线与垂直平分线的性质证明:,再利用三角形的内角和定理可得答案;②先利用角平分线的性质证明:,再利用证明从而可得结论;(2)过点作于点,证明:,再证明,可得,再利用线段的和差可得答案.【详解】(1)①解:∵平分∴又∵是的垂直平分线∴∴,∴又∵∴;②证明:∵平分,且,∴,在中,∴,;(2)解:线段、、之间满足,证明如下:过点作于点,∵是的垂直平分线,且、、共线∴也是的垂直平分线∴又∴是等腰直角三角形.∴∴是等腰直角三角形.∴∵平分,且,∴∴,在和中∴∴,∴.【点睛】本题考查的是三角形的内角和定理,角平分线的性质,垂直平分线的性质,直角三角形全等的判定与性质,含的直角三角形的性质,掌握以上知识是解题的关键.22、(1)3;(2)-11【分析】(1)根据整式乘法先化简,再代入已知值计算;(2)根据整式乘法先化简,把变形可得,再代入已知值计算.【详解】(1)===2x+1当原式=2+1=3(2)==因为所以,所以原式=-6-5=-11【点睛】考核知识点:整式化简求值.掌握整式的运算法则,特别乘法公式是关键.23、(1)①见解析;②见解析;(2)①(4,3);②见解析.【分析】(1)①先作出点A、B关于y轴的对称点C、D,再连接即可;②由于点B、D关于y轴对称,所以只要连接AD交y轴于点P,则点P即为所求;(2)①根据网格中作垂线的方法即可确定点E;②按要求画图即可确定点Q的位置.【详解】解:(1)①线段CD如图1所示;②点P的位置如图2所示;(2)①点E的坐标为(4,3);②点Q如图3所示.【点睛】本题考查了轴对称作图、两线段之和最小、网格中垂线的作图等知识,属于常见题型,熟练掌握上述基本知识是解题关键.24、(1)b=180.c=181;(2)b=2n2+2n,c=2n2+2n+1;(3)不是,理由见解析【解析】试题分析:(1)仔细观察可发现给出的勾股数中,斜边与较大的直角边的差是1,根据此规律及勾股定理公式不难求得b,c的值.(2)根据第一问发现的规律,代入勾股定理公式中即可求得b、c的值.(3)将第二问得出的结论代入第三问中看是否符合规律,符合则说明是一组勾股数,否则不是.试题解析:解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1.∵a=19,a2+b2=c2,∴192+b2=(b+1)2,∴b=180,∴c=181;(2)通过观察知c﹣b=1,∵(2n+1)2+b2=c2,∴c2﹣b2=(2n+1)2,(b+c)(c﹣b)=(2n+1)2,∴b+c=(2n+1)2,又c=b+1,∴2b+1=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论