版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南宁市重点中学2025届数学八年级第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列说法错误的是()A.边长相等的两个等边三角形全等B.两条直角边对应相等的两个直角三角形全等C.有两条边对应相等的两个等腰三角形全等D.形状和大小完全相同的两个三角形全等2.一元二次方程,经过配方可变形为()A. B. C. D.3.下列计算正确的是()A.=2 B.﹣=2C.=1 D.=3﹣24.一次函数的图象与轴的交点坐标是()A. B. C. D.5.一个两位数的个位数字与十位数字的和为14,若调换个位数字与十位数字,所得的新数比原数小36,则这个两位数是()A.86 B.95 C.59 D.686.已知,则的值为A.5 B.6 C.7 D.87.如图,在中,是的平分线,且,若,则的大小为()A. B. C. D.8.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线,当∠ACE=35°时,∠BAD的度数是()A.55° B.40° C.35° D.20°9.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处若的周长为18,的周长为6,四边形纸片ABCD的周长为A.20 B.24 C.32 D.4810.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G11.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2 C.(m-n)2 D.m2-n212.下列图形中,对称轴条数最多的图形是()A. B. C. D.二、填空题(每题4分,共24分)13.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.14.如下图,在中,,的垂直平分线交于点,垂足为.当,时,的周长是__________.15.估计与0.1的大小关系是:_____0.1.(填“>”、“=”、“<”)16.已知线段AB=8cm,点C在直线AB上,BC=3cm,则线段AC的长为________.17.如图,,若,则的度数是__________.18.若关于x的方程无解,则m的值是____.三、解答题(共78分)19.(8分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如图9的两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生;(2)请将条形统计图补充完整;(3)分别求出安全意识为“淡薄”的学生占被调查学生总数的百分比、安全意识为“很强”的学生所在扇形的圆心角的度数.20.(8分)如图,在△ABC中,D是BC边上的点(不与点B,C重合),连结AD(1)如图1,当点D是BC边上的中点时,则S△ABD:S△ACD=_________(直接写出答案)(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,S△ABD:S△ACD=_________(用含m,n的代数式表示).(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连结BE,如果AC=2,AB=4,S△BDE=6,求△ABC的面积.21.(8分)计算①②22.(10分)如图,已知经过点M(1,4)的直线y=kx+b(k≠0)与直线y=2x-3平行.(1)求k,b的值;(2)若直线y=2x-3与x轴交于点A,直线y=kx+b交x轴于点B,交y轴于点C,求△MAC的面积.23.(10分)如图,直线l:y1=﹣x﹣1与y轴交于点A,一次函数y2=x+3图象与y轴交于点B,与直线l交于点C,(1)画出一次函数y2=x+3的图象;(2)求点C坐标;(3)如果y1>y2,那么x的取值范围是______.24.(10分)如图所示,已知:△ABC和△CDE都是等边三角形.求证:AD=BE25.(12分)如图1,在平面直角坐标系中,直线:与轴交于点A,且经过点B(2,m),点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.26.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为1.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据三条边相等三个角相等可对A进行判断;利用SAS可对B进行判断;根据全等的条件可对C进行判断;根据全等的定义可对D进行判断.【详解】A.三条边都相等且三个都相等,能完全重合,该选项正确;B.两条直角边对应相等且夹角都等于90,符合SAS,该选项正确;C.不满足任何一条全等的判定条件,该选项错误;D.形状和大小完全相同的两个三角形完全重合,该选项正确.故选:C.【点睛】本题考查了全等三角形的概念和三角形全等的判定,其中结合特殊三角形的性质得出判定全等的条件是解决问题的关键..2、A【解析】x2-4x+4-4-6=(x-2)2-10=0,即(x-2)2=10;故选A.3、C【分析】利用二次根式的加减法对、进行判断;根据二次根式的乘法法则对进行判断;利用完全平方公式对进行判断.【详解】解:、,所以选项错误;、,所以选项错误;、,所以选项正确;、,所以选项错误.故选:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4、C【分析】一次函数y=2x+2的图象与x轴的交点的纵坐标是0,所以将y=0代入已知函数解析式,即可求得该交点的横坐标.【详解】令2x+2=0,解得,x=−1,则一次函数y=2x+2的图象与x轴的交点坐标是(−1,0);故选:C.【点睛】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(−,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.5、B【分析】先设出原两位数的十位与个位分别为和,再用含和的式子表示出原两位数和新两位数,最后根据题意找到等量关系列出方程组求解即可.【详解】设这个两位数的十位数字为,个位数字为则原两位数为,调换个位数字与十位数字后的新两位数为∵这个两位数的个位数字与十位数字的和为14∴∵调换个位数字与十位数字后的新两位数比原两位数小36∴∴联立方程得解得:∴这个两位数为95故选:B.【点睛】本题主要考查二元一次方程组的应用,解答本题的关键是读懂题意找出等量关系.6、C【分析】根据完全平方公式的变形即可求解.【详解】∵∴即∴=7,故选C.【点睛】此题主要考查完全平方公式的运用,解题的关键是熟知完全平方公式的变形及运用.7、B【分析】在AB上截取AC′=AC,连接DC′,由题知AB=AC+CD,得到DC=C′B,可证得△ADC≌△ADC′,即可得到△BDC′是等腰三角形,设∠B=x,利用三角形的内角和公式即可求解.【详解】解:在AB上截取AC′=AC,连接DC′如图所示:∵AB=AC+CD∴BC′=DC∵AD是∠BAC的角平分线∴∠C′AD=∠DAC在△ACD和△AC′D中∴△ACD≌△AC′D∴C′D=DC,∠ACD=∠AC′D∴DC′=BC′∴△BC′D是等腰三角形∴∠C′BD=∠C′DB设∠C′BD=∠C′DB=x,则∠ACD=∠AC′D=2x∵∠BAC=81°∴x+2x+81°=180°解得:x=33°∴∠ACB=33°×2=66°故选:B.【点睛】本题主要考查的是全等三角形的判定以及角平分线的性质,掌握全等三角形的判定和角平分线的性质是解题的关键.8、D【分析】根据角平分线的定义和等腰三角形的性质即可得到结论.【详解】∵CE是∠ACB的平分线,∠ACE=35°,∴∠ACB=2∠ACE=70°,∵AB=AC,∴∠B=∠ACB=70°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,故选D.【点睛】本题考查了等腰三角形的两个底角相等的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.9、B【解析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.
所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.
故矩形ABCD的周长为24cm.
故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.10、A【分析】三角形的重心即为三角形中线的交点,故重心一定在中线上,即可得出答案.【详解】解:如图由勾股定理可得:AN=BN=,BM=CM=∴N,M分别是AB,BC的中点∴直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.【点睛】本题主要考查了三角形的重心的定义,属于基础题意,比较简单.11、C【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.12、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A选项图形有4条对称轴;B选项图形有5条对称轴;C选项图形有6条对称轴;D选项图形有无数条对称轴∴对称轴的条数最多的图形是D选项图形,故选:D.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴.二、填空题(每题4分,共24分)13、(a+1)1.【分析】原式提取公因式,计算即可得到结果.【详解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],
=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],
=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],
=…,
=(a+1)1.
故答案是:(a+1)1.【点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.14、1【分析】根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB.【详解】解:∵DE是线段BC的垂直平分线,∠ACB=90°,
∴CD=BD,AD=BD.
又∵在△ABC中,∠ACB=90°,∠B=30°,
∴AC=AB,
∴△ACD的周长=AC+AB=AB=1,
故答案为:1.【点睛】本题考查了含30度角直角三角形的性质和垂直平分线的性质,直角三角形中30°的锐角所对的直角边等于斜边的一半,培养学生运用定理进行推理论证的能力.15、>【解析】∵.,∴,∴,故答案为>.16、5cm或11cm【分析】本题主要考查分类讨论的数学思想,因为C点可能在线段AB上,即在A、B两点之间,也可能在直线AB上,即在线段AB的延长线上,所以分情况讨论即可得到答案.【详解】①当C点在线段AB上时,C点在A、B两点之间,此时cm,∵线段cm,∴cm;②当C点在线段AB的延长线上时,此时cm,∵线段cm,∴cm;综上,线段AC的长为5cm或者11cm【点睛】本题主要考查一个分类讨论的数学思想,题目整体的难度不大,但解题过程中一定要认真的分析,避免遗漏可能出现的情况.17、【分析】根据平行线的性质得出,然后利用互补即可求出的度数.【详解】∵故答案为:.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.18、3【分析】先去分母求出x的解,由增根x=4即可求出m的值.【详解】解方程m+1-x=0,解得x=m+1,∵增根x=4,即m+1=4∴m=3.【点睛】此题主要考查分式方程的增根,解题的关键是熟知解分式方程的方法.三、解答题(共78分)19、(1)120;(2)详见解析;(3)10%;108°.【解析】(1)根据安全意识一般的有18人,所占的百分比是15%,据此即可求得调查的总人数,再根据各层次人数之和等于总人数求得“较强”的人数及百分比的概念求得“很强、淡薄”的百分比可补全图形;(2)总人数乘以“较强”和“很强”的百分比之和.【详解】解:(1)调查的总人数是:18÷15%=120(人),;(2)如图所示:;(3)安全意识为“淡薄”的学生占被调查学生总数的百分比=12120安全意识为“很强”的学生所在扇形的圆心角的度数=36120【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(1)1:1;(2)m∶n;(3)1【分析】(1)过A作AE⊥BC于E,根据三角形面积公式求出即可;
(2)过D作DE⊥AB于E,DF⊥AC于F,根据角平分线性质求出DE=DF,根据三角形面积公式求出即可;
(3)根据已知和(1)(2)的结论求出△ABD和△ACD的面积,即可求出答案.【详解】解:(1)过A作AE⊥BC于E,
∵点D是BC边上的中点,
∴BD=DC,
∴SABD:S△ACD=(×BD×AE):(×CD×AE)=1:1,
故答案为:1:1;
(2)过D作DE⊥AB于E,DF⊥AC于F,
∵AD为∠BAC的角平分线,
∴DE=DF,
∵AB=m,AC=n,
∴SABD:S△ACD=(×AB×DE):(×AC×DF)=m:n;
(3)∵AD=DE,
∴由(1)知:S△ABD:S△EBD=1:1,
∵S△BDE=6,
∴S△ABD=6,
∵AC=2,AB=4,AD平分∠CAB,
∴由(2)知:S△ABD:S△ACD=AB:AC=4:2=2:1,
∴S△ACD=3,
∴S△ABC=3+6=1,
故答案为:1.【点睛】本题考查了角平分线性质和三角形的面积公式,能根据(1)(2)得出规律是解此题的关键.21、①;②【分析】①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【详解】解:①原式==;②原式==.【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.22、(3)k=3,b=3;(3)3.2【分析】(3)先根据两直线平行得到k=3,然后把M点坐标代入y=3x+b求出b即可;(3)求得A、B、C的坐标,然后根据S△MAC=S△AMB﹣S△ABC求得即可.【详解】(3)∵直线y=kx+b(k≠0)与直线y=3x-3平行,∴k=3.∵直线y=3x+b经过点M(3,4),∴3×3+b=4,∴b=3.∴k=3,b=3(3)连接AC,AM,在直线y=3x-3中,当y=0时,3x–3=0,解得x=3.2.∴点A坐标是(3.2,0)在y=3x+3中,当y=0时,3x+3=0,解得x=-3.当x=0时,y=3,∴点B的坐标是(-3,0),点C的坐标是(0,3).∴AB=OA+OB=3.2+=3.2∴S△MAC=S△AMB-S△ABC=×3.2×4-×3.2×3=3.2【点睛】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.23、(1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.【解析】(1)分别求出一次函数y1=x+3与两坐标轴的交点,再过这两个交点画直线即可;(1)将两个一次函数的解析式联立得到方程组,解方程组即可求出点C坐标;(3)根据图象,找出y1落在y1上方的部分对应的自变量的取值范围即可.【详解】解:(1)∵y1=x+3,∴当y1=0时,x+3=0,解得x=﹣4,当x=0时,y1=3,∴直线y1=x+3与x轴的交点为(﹣4,0),与y轴的交点B的坐标为(0,3).图象如下所示:(1)解方程组,得,则点C坐标为(﹣1,);(3)如果y1>y1,那么x的取值范围是x<﹣1.故答案为(1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.【点睛】本题考查了一次函数的图象与性质,两直线交点坐标的求法,一次函数与一元一次不等式,需熟练掌握.24、证明见解析.【解析】试题分析:易证∠ACD=∠BCE,即可证明△ACD≌△BCE,根据全等三角形对应边相等的性质即可解题.试题解析:∵∠ACB=∠DCE,∠ACD+∠BCD=∠ACB,∠BCE+∠BCD=∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.考点:1.全等三角形的判定与性质;2.等边三角形的性质.25、(1);(2);(3)或;(4)t最小值为秒【分析】(1)把B(2,m)代入直线l解析式可求出m的值,即可得B点坐标,设直线BC的解析式为y=kx+b,把B、C两点坐标代入可求得k、m的值,即可的直线BC的解析式;(2)过点O作交BC于点D,可知S△ABC=S△ABD,,联立直线BC与OD的解析式解得交点D的坐标即可;(3)分别讨论P点在y轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业环境保护责任合同
- 瓷制球形把手市场发展现状调查及供需格局分析预测报告
- 通风用气动叶轮市场环境与对策分析
- 2024年度互联网旅游服务平台合同
- 2024年度云计算中心建设及运营合同
- 螺旋输送机市场需求与消费特点分析
- 跑步机市场需求与消费特点分析
- 2024年度大豆品牌授权合同
- 04版设备采购合同范本
- 2024年度大豆信息化建设合同
- 保险精算原理
- 养老院人力资源管理
- 敬老院设备采购投标方案(技术方案)
- 充电桩采购安装售后服务方案
- 生物技术对医疗行业的影响
- 资产评估学教程(第八版)习题及答案 乔志敏
- 初中-语文-八年级-上学期-文言文孟子三章-富贵不能淫-对比阅读-练习题(含解析答案)
- 华为数字能源初级练习卷含答案
- 关于做好冬季安全生产工作的通知
- 二年级上册道德与法治10《我们不乱扔》说课稿
- 2023-2024学年高一上学期选科指导主题班会 课件
评论
0/150
提交评论