吉林省松原市宁江四中学2025届数学八年级第一学期期末统考模拟试题含解析_第1页
吉林省松原市宁江四中学2025届数学八年级第一学期期末统考模拟试题含解析_第2页
吉林省松原市宁江四中学2025届数学八年级第一学期期末统考模拟试题含解析_第3页
吉林省松原市宁江四中学2025届数学八年级第一学期期末统考模拟试题含解析_第4页
吉林省松原市宁江四中学2025届数学八年级第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省松原市宁江四中学2025届数学八年级第一学期期末统考模拟试题期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.约分的结果是()A. B. C. D.2.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC3.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=6cm,AD=5cm,那么BC的长是()A.4cm B.5cm C.6cm D.无法确定4.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.-3xy C.-1 D.15.下列各式中,分式的个数为(),,,,,,A.2个 B.3个 C.4个 D.5个6.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于B(a,﹣a),与y轴交于点A(0,b).其中a、b满足(a+2)2+=0,那么,下列说法:(1)B点坐标是(﹣2,2);(2)三角形ABO的面积是3;(3);(4)当P的坐标是(﹣2,5)时,那么,,正确的个数是()A.1个 B.2个 C.3个 D.4个7.文文借了一本书共280页,要在两周借期内读完.当她读了一半时,发现平均每天要多读21页才能在借期内读完.她在读前一半时,平均每天读多少页?如果设读前一半时,平均每天读页,则下列方程中,正确的是()A. B.C. D.8.下列条件中,能确定三角形的形状和大小的是()A.AB=4,BC=5,CA=10 B.AB=5,BC=4,∠A=40°C.∠A=90°,AB=8 D.∠A=60°,∠B=50°,AB=59.下列各式中,属于分式的是()A.x﹣1 B. C. D.(x+y)10.某公司有学徒工和熟练工两个工种的工人,已知一个学徒工每天制造的零件比一个熟练少个,一个学徒工与两个熟练工每天共可制造个零件,求一个学徒工与一个熟练工每天各能制造多少个零件?设一个学徒工每天能制造个零件,一个熟练工每天能制造个零件,根据题意可列方程组为()A. B.C. D.11.已知是完全平方式,则常数等于()A.8 B.±8 C.16 D.±1612.在下列各数中,无理数有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.已知多项式是关于的完全平方式,则________.14.已知,则____.15.在学习平方根的过程中,同学们总结出:在中,已知底数和指数,求幂的运算是乘方运算:已知幂和指数,求底数的运算是开方运算.小明提出一个问题:“如果已知底数和幕,求指数是否也对应着一种运算呢?”老师首先肯定了小明善于思考,继而告诉大家这是同学们进入高中将继续学习的对数,感兴趣的同学可以课下自主探究.小明课后借助网络查到了对数的定义:小明根据对数的定义,尝试进行了下列探究:∵,∴;∵,∴;∵,∴;∵,∴;计算:________.16.如图,在锐角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N分别是BD和BC上的动点,则CM+MN的最小值是_____.17.如图,将△ABC沿着AB方向,向右平移得到△DEF,若AE=8,DB=2,则CF=______.18.科学家测得肥皂泡的厚度约为0.0000007米,0.0000007用科学记数法表示为__________.三、解答题(共78分)19.(8分)先化简,然后从中选出一个合适的整数作为的值代入求值.20.(8分)对于二次三项式,可以直接用公式法分解为的形式,但对于二次三项式,就不能直接用公式法了,我们可以在二次三项式中先加上一项,使中的前两项与构成完全平方式,再减去这项,使整个式子的值不变,最后再用平方差公式进步分解.于是.像上面这样把二次三项式分解因式的方法叫做配方法.请用配方法将下列各式分解因式:(1);(2).21.(8分)先阅读下题的解答过程,然后解答后面的问题,已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值解法一:设2x3﹣x2+m=x+m=(2x+1)(x2+ax+b)则2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得∴m=.解法二:设2x3﹣x2+m=A(2x+1)(A为整式)由于上式为恒等式,为方便计算取x=,,故m=选择恰当的方法解答下列各题(1)已知关于的多项式x2+mx﹣15有一个因式是x﹣3,m=.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值:(3)已知x2+2x+1是多项式x3﹣x2+ax+b的一个因式,求a,b的值,并将该多项式分解因式.22.(10分)建立模型:如图1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直线ED经过点B,过A作AD⊥ED于D,过C作CE⊥ED于E.则易证△ADB≌△BEC.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段AB和直角∠ABC转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.模型应用:(1)如图2,点A(0,4),点B(3,0),△ABC是等腰直角三角形.①若∠ABC=90°,且点C在第一象限,求点C的坐标;②若AB为直角边,求点C的坐标;(2)如图3,长方形MFNO,O为坐标原点,F的坐标为(8,6),M、N分别在坐标轴上,P是线段NF上动点,设PN=n,已知点G在第一象限,且是直线y=2x一6上的一点,若△MPG是以G为直角顶点的等腰直角三角形,请直接写出点G的坐标.23.(10分)用配方法解方程:.24.(10分)计算与化简求值(1)计算:(2)先化简,再求值:,其中x=225.(12分)如图,在平面直角坐标系中,直线l1:y=x+6与y轴交于点A,直线l2:y=kx+b与y轴交于点B,与l1相交于C(﹣3,3),AO=2BO.(1)求直线l2:y=kx+b的解析式;(2)求△ABC的面积.26.为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分)中位数(分)众数(分)一班8.76a=b=二班8.76c=d=根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.

参考答案一、选择题(每题4分,共48分)1、D【分析】先将分式分子分母因式分解,再约去公因式即得.【详解】解:故选:D.【点睛】本题考查分式的基本性质的应用中的约分,找清楚分子分母的公因式是解题关键.2、B【解析】试题分析:∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.A.∵在△ADF和△CBE中,,∴△ADF≌△CBE(ASA),正确,故本选项错误.B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确.C.∵在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),正确,故本选项错误.D.∵AD∥BC,∴∠A=∠C.由A选项可知,△ADF≌△CBE(ASA),正确,故本选项错误.故选B.3、B【分析】由题意直接根据全等三角形的性质进行分析即可得出答案.【详解】解:∵△ABC≌△BAD,AB=6cm,BD=6cm,AD=5cm,∴BC=AD=5cm.故选:B.【点睛】本题考查全等三角形的性质,全等三角形的对应边相等;全等三角形的对应角相等,找到全等三角形的对应边是解题的关键.4、A【详解】解:∵左边=-3xy(4y-2x-1)=-12xy2+6x2y+3xy右边=-12xy2+6x2y+□,∴□内上应填写3xy故选:A.5、B【分析】根据如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】、、分母中含字母,因此是分式;一共有3个;故选B.【点睛】本题考查分式的定义,解题关键是熟练掌握分式的定义.6、D【分析】(1)根据非负数的性质即可求得a的值,即可得到B(﹣2,2);(2)利用三角形面积公式求得即可判断;(3)求得△OBC和△AOB的面积即可判断;(4)S△BCP和S△AOB的值即可判断.【详解】解:(1)∵a、b满足(a+2)2+=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴点A的坐标为(0,3),点B的坐标为(﹣2,2),故(1)正确;(2)三角形ABO的面积=×OA×=×3×2=3,故(2)正确;(3)设直线l2的解析式为y=kx+c(k≠0),将A、B的坐标代入y=kx+c,得:,解得:,∴直线l2的解析式为y=x+3,令y=0,则x=﹣6,∴C(﹣6,0),∴S△OBC==6,∵S△ABO=3,∴S△OBC:S△AOB=2:1;故(3)正确;(4)∵P的坐标是(﹣2,5),B(﹣2,2),∴PB=5﹣2=3,∴S△BCP==6,S△AOB=×3×2=6,∴S△BCP=S△AOB.故(4)正确;故选:D.【点睛】本题考查了两条直线相交问题,三角形的面积,一次函数图象上点的坐标特征,求得交点坐标是解题的关键.7、D【解析】试题解析:根据读前一半时,平均每天读页,即读140页时,用时表示为天,后一半平均每天要多读21页,得读后一半时平均每天读页,用时天,根据两周借期内读完列分式方程为:故选D.8、D【分析】由已知两角夹一边的大小,,符合三角形全等的判定条件可以,可作出形状和大小唯一确定的三角形,即可三角形的大小和形状.【详解】解:A、由于AB=4,BC=5,CA=10,所以AB+BC<10,三角形不存在,故本选项错误;

B、若已知AB、BC与∠B的大小,则根据SAS可判定其形状和大小,故本选项错误;C、有一个角的大小,和一边的长,故其形状也不确定,故本选项错误.D、∠A=60°,∠B=50°,AB=5,有两个角的大小和夹边的长,所以根据ASA可确定三角形的大小和形状,故本选项正确.故选:D.【点睛】本题主要考查了三角形的一些基础知识问题,应熟练掌握.9、B【解析】利用分式的定义判断即可.分式的分母中必须含有字母,分子分母均为整式.【详解】解:是分式,故选:.【点睛】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.10、A【分析】根据题意找到两个等量关系列出方程组即可.【详解】解:一个学徒工每天能制造个零件,一个熟练工每天能制造个零件,根据题中:一个学徒工每天制造的零件比一个熟练少个,以及一个学徒工与两个熟练工每天共可制造个零件可得方程组:.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够根据题意找到两个等量关系,这是列方程的依据.11、D【分析】根据完全平方公式:,即可求出k的值.【详解】解:∵是完全平方式,∴∴k=±16故选D.【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.12、B【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】∵,,∴这一组数中的无理数有:3π,共2个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.二、填空题(每题4分,共24分)13、15或【分析】根据完全平方公式的形式计算即可.【详解】∵是一个完全平方式,∴=±1×1x×3y,∴15或.故答案为:15或.【点睛】本题考查了对完全平方式的应用,注意:完全平方式有两个:a1+1ab+b1和a1-1ab+b1.14、【分析】先把代数式利用整式乘法进行化简,然后利用整体代入法进行解题,即可得到答案.【详解】解:=,∵,∴,∴原式===;故答案为:.【点睛】本题考查了整式的化简求值,整式的加减混合运算,解题的关键是熟练掌握整式混合运算的运算法则进行解题.15、6【分析】根据已知条件中给出的对数与乘方之间的关系求解可得;【详解】解:∵,∴;故答案为:6【点睛】本题主要考查数字的变化规律,解题的关键是弄清对数与乘方之间的关系,并熟练运用.16、1【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为30,AB=10,∴×10×CE=30,∴CE=1.即CM+MN的最小值为1.故答案为1.【点睛】本题考查的是轴对称-最短路线问题,解题的关键是学会利用垂线段最短解决最短问题,属于中考常考题型.17、1.【解析】根据平移的性质可得AB=DE,然后求出AD=BE,再求出AD的长即为平移的距离.【详解】∵△ABC沿AB方向向右平移得到△DEF,

∴AB=DE,

∴AB-DB=DE-DB,

即AD=BE,

∵AE=8,DB=2,

∴AD=12(AE-DB)=12×(8-2)=1,

即平移的距离为1.

∴CF=AD=1,

【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行(或在同一条直线上)且相等,对应线段平行(或在同一条直线上)且相等,对应角相等.18、7×【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000

000

7=7×.

故答案为:7×.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题(共78分)19、-1【解析】先化简,再选出一个合适的整数代入即可,要注意a的取值范围.【详解】解:,当时,原式.【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.20、(1);(2)【分析】(1)先将进行配方,将其配成完全平方,再利用平方差公式进行因式分解即可;(2)先将进行配方,配成完全平方,在利用平方差公式进行因式分解.【详解】解:(1)(2)【点睛】本题主要考查的是因式分解,正确的理解清楚题目意思,掌握题目给的方法是解题的关键.21、(1)1;(1)m=﹣5,n=10;(3)a=﹣5,b=﹣3,该多项式分解因式为:x3﹣x1﹣5x﹣3=(x﹣3)(x+1)1【分析】(1)根据多项式乘法将等式右边展开有:x1+mx﹣15=(x﹣3)(x+n)=x1+(n﹣1)x﹣n,所以,根据等式两边对应项的系数相等可以求得m的值;(1)设x4+mx3+nx﹣16=A(x﹣1)(x﹣1)(A为整式),分别取x=1和x=1得关于m和n的二元一次方程组,求解即可;(3)设x3﹣x1+ax+b=(x+p)(x1+1x+1),将等式右边展开,比较系数,得关于p,a,b的三元一次方程组,解方程组,再进行因式分解即可.【详解】解:(1)由题设知:x1+mx﹣15=(x﹣3)(x+n)=x1+(n﹣3)x﹣3n,故m=n﹣3,﹣3n=﹣15,解得n=5,m=1.故答案为1;(1)设x4+mx3+nx﹣16=A(x﹣1)(x﹣1)(A为整式),分别令x=1和x=1得:,解得:,∴m=﹣5,n=10;(3)设x3﹣x1+ax+b=(x+p)(x1+1x+1),∵(x+p)(x1+1x+1)=x3+(1+p)x1+(1+1p)x+p,∴,解得:,∴多项式x3﹣x1+ax+b=x3﹣x1﹣5x﹣3,∴x3﹣x1﹣5x﹣3=(x﹣3)(x1+1x+1)=(x﹣3)(x+1)1,∴a=﹣5,b=﹣3,该多项式分解因式为:x3﹣x1﹣5x﹣3=(x﹣3)(x+1)1.【点睛】本题考查了待定系数法在因式分解中的应用,读懂阅读材料中的分解方法,是解题的关键.22、(1)①(7,3);②(7,3)、(4,7)、(-4,1)、(-1,-3);(2)(4,2)、.【分析】(1)①过C作CD垂直于x轴构造“一线三垂直”,再根据全等三角形的性质求解即可;②点C有四处,分别作出图形,根据“一线三垂直”或对称求解即可;(2)当点G为直角顶点时,分点G在矩形MFNO的内部与外部两种情况构造“一线三垂直”求解即可.【详解】(1)①如图,过C作CD垂直于x轴,根据“一线三垂直”可得△AOB≌△BDC,∴AO=BD,OB=CD,∵点A(0,4),点B(3,0),∴AO=4,OB=3,∴OD=3+4=7,∴点C的坐标为(7,3);②如图,若AB为直角边,点C的位置可有4处,a、若点C在①的位置处,则点C的坐标为(7,3);b、若点C在的位置处,同理可得,则点的坐标为(4,7);c、若点C在的位置处,则、关于点A对称,∵点A(0,4),点(4,7),∴点的坐标为(-4,1);d、若点C在的位置处,则、C关于点B对称,∵点B(3,0),点C(7,3),∴点的坐标为(-1,-3);综上,点C的坐标为(7,3)、(4,7)、(-4,1)、(-1,-3);(2)当点G位于直线y=2x-6上时,分两种情况:①当点G在矩形MFNO的内部时,如图,过G作x轴的平行线AB,交y轴于A,交直线NF于点B,设G(x,2x-6);则OA=2x-6,AM=6-(2x-6)=12-2x,BG=AB-AG=8-x;则△MAG≌△GBP,得AM=BG,即:12-2x=8-x,解得x=4,∴G(4,2);当点G在矩形MFNO的外部时,如图,过G作x轴的平行线AB,交y轴于A,交直线NF的延长线于点B,设G(x,2x-6);则OA=2x-6,AM=(2x-6)-6=2x-12,BG=AB-AG=8-x;则△MAG≌△GBP,得AM=BG,即:2x-12=8-x,解得,∴G;综上,G点的坐标为(4,2)、.【点睛】本题考查的是一次函数综合题,涉及到点的坐标、矩形的性质、一次函数的应用、等腰直角三角形以及全等三角形等相关知识的综合应用,需要考虑的情况较多,难度较大.23、或【分析】根据配方法的步骤先两边都除以2,再移项,再配方,最后开方即可得出答案.【详解】原方程变形为:配方得即或所以原方程得解为或【点睛】本题考查了配方法解一元二次方程,关键是能正确配方,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.24、(1);(2),【分析】(1)先进行积的乘方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论