上海市交大二附中2025届数学八上期末考试模拟试题含解析_第1页
上海市交大二附中2025届数学八上期末考试模拟试题含解析_第2页
上海市交大二附中2025届数学八上期末考试模拟试题含解析_第3页
上海市交大二附中2025届数学八上期末考试模拟试题含解析_第4页
上海市交大二附中2025届数学八上期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市交大二附中2025届数学八上期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为(8,6),将沿OB翻折,A的对应点为E,OE交BC于点D,则D点的坐标为()A.(,6) B.(,6) C.(,6) D.(,6)2.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. B. C. D.3.已知,,则代数式的值是()A.6 B.﹣1 C.﹣5 D.﹣64.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的()A. B. C. D.5.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCB C.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB6.若的结果中不含项,则的值为()A.2 B.-4 C.0 D.47.如图所示,在锐角三角形ABC中,AB=8,AC=5,BC=6,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,下列结论:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周长是7,④,⑤.其中正确的个数有()A.2 B.3 C.4 D.58.如图:若△ABE≌△ACD,且AB=6,AE=2,则EC的长为()A.2 B.3 C.4 D.69.已知,如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5cm,BD=3cm,则ED的长为()A.2cm B.3cm C.5cm D.8cm10.下列说法正确的是()A.(﹣3)2的平方根是3 B.=±4C.1的平方根是1 D.4的算术平方根是211.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. B.3 C.1 D.12.计算的结果为()A.1 B.x+1 C. D.二、填空题(每题4分,共24分)13.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm1.14.将数字1657900精确到万位且用科学记数法表示的结果为__________.15.如图,中,,,的平分线交于点,平分.给出下列结论:①;②;③;④;⑤.其中正确的结论是______.16.如图,在中,分别以点A和点C为圆心,大于长为半径画弧,两弧相交于点M、N;作直线MN分别交BC、AC于点D、点E,若,的周长为13cm,则的周长为________.17.一个正方形的边长增加2cm,它的面积就增加24cm,这个正方形的边长是______cm.18.若二次根式有意义,则x的取值范围是___.三、解答题(共78分)19.(8分)解方程组20.(8分)如图,在等腰中,,,是边上的中点,点,分别是边,上的动点,点从顶点沿方向作匀速运动,点从从顶点沿方向同时出发,且它们的运动速度相同,连接,.(1)求证:.(2)判断线段与的位置及数量关系,并说明理由.(3)在运动过程中,与的面积之和是否为定值?若是,请求出这个定值;若不是,请说明理由.21.(8分)如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.22.(10分)已知a,b为实数,且满足关系式:|a﹣2b|+(3a﹣b﹣11)2=1.求:(1)a,b的值;(2)5的平方根.23.(10分)如图,在平面直角坐标系xOy中,一次函数y1=−x+2与x轴、y轴分别相交于点A和点B,直线y2=kx+b(k≠0)经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分.(1)求A、

B的坐标;(2)求△ABO的面积;(3)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式.24.(10分)如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:AE=DE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.25.(12分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图(1)中,画一个三角形,使它的三边长都是有理数;(2)在图(2)中,画一个直角三角形,使它们的三边长都是无理数;(3)在图(3)中,画一个正方形,使它的面积是10.26.在春节来临之际,某商店订购了型和型两类糖果,型糖果28元/千克,型糖果24元/千克,若订购型糖果的质量比订购型糖果的质量的2倍少20千克,购进两种糖果共用了2560元,求订购型、型两类糖果各多少千克?

参考答案一、选择题(每题4分,共48分)1、D【分析】根据翻折的性质及勾股定理进行计算即可得解.【详解】∵四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为∴OC=AB=6,BC=OA=8,,,BC//OA∴∵将沿OB翻折,A的对应点为E∴∴∴OD=BD设CD=x,则在中,∴解得:∴点D的坐标为,故选:D.【点睛】本题主要考查了翻折的性质,熟练掌握翻折及勾股定理的计算是解决本题的关键.2、C【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【详解】∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°;故选C.【点睛】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.3、D【分析】将代数式提公因式,即可变形为,代入对应的值即可求出答案.【详解】解:==3×(-2)=-6故选:D.【点睛】本题主要考查了因式分解,熟练提公因式以及整体代入求值是解决本题的关键.4、B【分析】根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.【详解】解:由题意,得

y=30-5t,

∵y≥0,t≥0,

∴30-5t≥0,

∴t≤6,

∴0≤t≤6,

∴y=30-5t是降函数且图象是一条线段.

故选B.【点睛】本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.5、D【解析】试题分析:根据题意知,BC边为公共边.A.由“SSS”可以判定△ABC≌△DCB,故本选项错误;B.由“SAS”可以判定△ABC≌△DCB,故本选项错误;C.由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D.由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选D.考点:全等三角形的判定.6、D【分析】由的结果中不含项,可知,结果中的项系数为0,进而即可求出答案.【详解】∵==,又∵的结果中不含项,∴1-k=0,解得:k=1.故选D.【点睛】本题主要考查多项式与多项式的乘法法则,利用法则求出结果,是解题的关键.7、C【分析】根据翻折变换的性质得到DC=DE,BE=BC,,根据已知求出AE的长,根据三角形周长公式计算即可,根据高相等判断,根据△BCD≅△BDE判断①的对错,根据等高,则面积的比等于底边的比判断⑤.【详解】根据翻折变换的性质得到DC=DE,BE=BC=6,,故DE⊥AB错误,即②错误∴△BCD≅△BDE,∴∠CBD=∠EBD,故①正确;

∵AB=8,∴AE=AB-BE=2,

△AED的周长为:AD+AE+DE=AC+AE=7,故③正确;设三角形BCD的高为h,则三角形BAD的高也为h∴,故④正确;当三角形BCD的高为H,底边为CD,则三角形BAD的高也为H,底边为AD∴,故⑤正确.故选C.【点睛】本题考查的是翻折变换的知识涉及了三角形全等、等高等知识点,掌握翻折变换的性质、找准对应关系是解题的关键.8、C【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABE≌△ACF,∴AC=AB=6,∴EC=AC﹣AE=6-2=4,故选:C.【点睛】本题考查的知识点是全等三角形的性质,熟记性质内容是解此题的关键.9、A【解析】根据ASA得到△ACD≌△AED,再利用全等三角形的性质得到DE=CD即可求出.【详解】解:∵∠CAD=∠EAD,AD=AD,∠ADC=∠ADE,∴△ACD≌△AED,∴DE=CD=BC-BD=5-3=2,故选A.【点睛】本题考查了全等三角形的判定与性质,主要考查学生运用定理和性质进行推理的能力,题目比较好,难度适中.10、D【解析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B、,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.11、A【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故选A.12、C【分析】先进行括号内的计算,然后将除号换为乘号,再进行分式间的约分化简.【详解】原式====.故选C.【点睛】本题考查分式的混合运算,混合运算顺序为:先乘方,再乘除,然后加减,有括号的先算括号里面的.二、填空题(每题4分,共24分)13、2【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【详解】解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a1,正方形B的面积=b1,正方形C的面积=c1,正方形D的面积=d1,又∵a1+b1=x1,c1+d1=y1,∴正方形A、B、C、D的面积和=(a1+b1)+(c1+d1)=x1+y1=71=2cm1.故答案为:2.【点睛】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方是解答本题的关键.14、1.66×1【分析】用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,再对千位数的数字进行四舍五入即可.【详解】解:1657900=1.6579×1≈1.66×1.

故答案为:1.66×1.【点睛】本题考查了科学记数法表示较大的数的方法,准确确定a与n值是关键.15、①③④【分析】①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C,则∠C=∠ABC,由于∠BAC=90°,那么∠C=30°,但∠C不一定等于30°,故②错误;③由BE、AG分别是∠ABC、∠DAC的平分线,得到∠ABF=∠EBD.由于∠AFE=∠BAD+∠FBA,∠AEB=∠C+∠EBD,得到∠AFE=∠AEB,可得③正确;④连接EG,先证明△ABN≌△GBN,得到AN=GN,证出△ANE≌△GNF,得∠NAE=∠NGF,进而得到GF∥AE,故④正确;⑤由AE=AF,AE=FG,而△AEF不一定是等边三角形,得到EF不一定等于AE,于是EF不一定等于FG,故⑤错误.【详解】∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,∴∠ABC=∠DAC,∠BAD=∠C,故①正确;若∠EBC=∠C,则∠C=∠ABC,∵∠BAC=90°,那么∠C=30°,但∠C不一定等于30°,故②错误;∵BE、AG分别是∠ABC、∠DAC的平分线,∴∠ABF=∠EBD,∵∠AFE=∠BAD+∠ABF,∠AEB=∠C+∠EBD,又∵∠BAD=∠C,∴∠AFE=∠AEF,∴AF=AE,故③正确;∵AG是∠DAC的平分线,AF=AE,∴AN⊥BE,FN=EN,在△ABN与△GBN中,∵,∴△ABN≌△GBN(ASA),∴AN=GN,又∵FN=EN,∠ANE=∠GNF,∴△ANE≌△GNF(SAS),∴∠NAE=∠NGF,∴GF∥AE,即GF∥AC,故④正确;∵AE=AF,AE=FG,而△AEF不一定是等边三角形,∴EF不一定等于AE,∴EF不一定等于FG,故⑤错误.故答案为:①③④.【点睛】本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.16、19cm【分析】根据尺规作图得到是线段的垂直平分线,根据线段垂直平分线的性质得到,,根据三角形的周长公式计算即可.【详解】解:由尺规作图可知,是线段的垂直平分线,,,的周长为13,,则的周长,故答案为:.【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17、a=1【解析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有

(a+2)2-a2=24,

(a+2)2-a2=(a+2+a)(a+2-a)=4a+4=24,

解得a=1.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.18、【详解】试题分析:根据题意,使二次根式有意义,即x﹣1≥0,解得x≥1.故答案是x≥1.【点睛】考点:二次根式有意义的条件.三、解答题(共78分)19、【分析】利用加减消元法求出解即可;【详解】解:,①+②得:7x=14,

解得:x=2,把x=2代入①得:6+y=5,

解得:y=-1,则方程组的解为【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.20、(1)证明见解析;(2)DE⊥DF,DE=DF,证明见解析;(3)△BDE与△CDF的面积之和始终是一个定值,这个定值为1.【解析】(1)由题意根据全等三角形的判定运用SAS,求证即可;(2)根据全等三角形的性质结合中点和垂线定义,进行等量替换即可得出线段与的位置及数量关系;(3)由题意根据全等三角形的性质得出S△BDE+S△CDF=S△ADF+S△CDF=S△ADC,进而分析即可得知与的面积之和.【详解】解:(1)∵AB=AC,D是BC边上的中点,∴AD是BC边上的高又∵∠BAC=90°,∴∠ABD=∠DAF=∠BAD=45°,∴BD=AD又由题意可知BE=AF,∴△BDE≌△ADF(SAS).(2)∵DE⊥DF,DE=DF,理由如下:∵△BDE≌△ADF,∴DE=DF,∠BDE=∠ADF∵AB=AC,D是BC边上的中点,∴AD⊥BC,∠BDE+∠ADE=90°,∴∠ADE+∠ADF=90°,DE⊥DF.(3)在运动过程中,△BDE与△CDF的面积之和始终是一个定值∵AB=AC,D是BC边上的中点,∠BAC=90°,∴AD=BD=BC=4又∵△BDE≌△ADFS△BDE+S△CDF=S△ADF+S△CDF=S△ADC又∵S△ADC=S△ABC=.BC.AD=1∵点E,F在运动过程中,△ADC的面积不变,∴△BDE与△CDF的面积之和始终是一个定值,这个定值为1.【点睛】本题考查全等三角形的综合问题,熟练掌握全等三角形的性质与判定是解题的关键.21、证明过程见解析【解析】试题分析:由可得,由,根据等量代换可得,从而,接下来,依据垂线的定义可得到AB和CD的位置关系.证明:在中,,∴,又∵,∴,∴,∴.点睛:本题主要就是依据三角形的内角和定理和垂线的定义求解的.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线.22、(1)a=4,b=2;(2)±2.【分析】(1)先根据非负数的性质列出关于ab的方程组,求出a、b的值即可;(2)把ab的值代入代数式进行计算即可.【详解】(1)∵a,b为实数,且满足关系式:|a﹣2b|+(2a﹣b﹣11)2=1,∴,解得∴a=4,b=2;(2)∵a=4,b=2,∴原式5=6﹣2+5=3.∵(±2)2=3,∴5的平方根是±2.【点睛】本题考查的是实数的运算,熟知非负数的性质及实数的运算法则是解答此题的关键.23、(1)A(3,0),B(0,2);(2)3;(3)P(,),y=-1x+1【分析】(1)已知直线y1的解析式,分别令x=0和y=0即可求出A和B的坐标;(2)根据(1)中求出的A和B的坐标,可知OA和OB的长,利用三角形的面积公式即可求出S△ABO;(3)由(2)中的S△ABO,可推出S△APC的面积,求出yp,继而求出点P的坐标,将点C和点P的坐标联立方程组求出k和b的值后即可求出函数解析式.【详解】解:(1)∵一次函数的解析式为y1=-x+2,令x=0,得y1=2,∴B(0,2),令y1=0,得x=3,∴A(3,0);(2)由(1)知:OA=3,OB=2,∴S△ABO=OA•OB=×3×2=3;(3)∵S△ABO=×3=,点P在第一象限,∴S△APC=AC•yp=×(3-1)×yp=,解得:yp=,又点P在直线y1上,∴=-x+2,解得:x=,∴P点坐标为(,),将点C(1,0)、P(,)代入y=kx+b中,得,解得:.故可得直线CP的函数表达

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论