版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省杭州市萧山区城北片数学八年级第一学期期末监测模拟试题测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在中,,点在上,于点,的延长线交的延长线于点,则下列结论中错误的是()A. B. C. D.2.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤SBDE:S△ACD=BD:AC,其中正确的个数()A.5个 B.4个 C.3个 D.2个3.三角形的三边长分别是a、b、c,下列各组数据中,能组成直角三角形的是()A.4,5,6 B.7,12,15 C.5,13,12 D.8,8,114.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm5.如图,已知,.若要得到,则下列条件中不符合要求的是()A. B. C. D.6.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm7.下列五个命题中,真命题有()①两条直线被第三条直线所截,内错角相等②如果和是对顶角,那么③是一组勾股数④的算术平方根是⑤三角形的一个外角大于任何一个内角A.1个 B.2个 C.3个 D.4个8.下列各式中,正确的是A. B. C. D.9.若x、y的值均扩大为原来的2倍,则下列分式的值保持不变的是A. B. C. D.10.如图是作的作图痕迹,则此作图的已知条件是()A.已知两边及夹角 B.已知三边 C.已知两角及夹边 D.已知两边及一边对角二、填空题(每小题3分,共24分)11.如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交AD′于点E,AB=6cm,BC=8cm,求阴影部分的面积.12.计算(π﹣3.14)0+=__________.13.若解关于x的分式方程=3会产生增根,则m=_____.14.如图,P为∠MBN内部一定点,PD⊥BN,PD=3,BD=1.过点P的直线与BM和BN分别相交于点E和点F,A是BM边上任意一点,过点A作AC⊥BN于点C,有=3,则△BEF面积的最小值是______.15.当时,分式有意义.16.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.17.如图:在中,,平分,平分外角,则__________.18.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.三、解答题(共66分)19.(10分)解不等式组:,并求出它的最小整数解.20.(6分)(阅读材料)数学活动课上,李老师准备了若干张如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为a,宽为b的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(理解应用)(1)用两种不同的方法计算出大正方形(图2)的面积,从而可以验证一个等式.这个等式为;(2)根据(1)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知:(2019-a)2+(a-2018)2=5,求(2019-a)(a-2018)的值.21.(6分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款是多少元?(3)在(2)的条件下,把每个学生的捐款数额(以元为单位)——记录下来,则在这组数据中,众数是多少?22.(8分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点,动点M从A点以每秒1个单位的速度沿x轴向左移动.求A、B两点的坐标;求的面积S与M的移动时间t之间的函数关系式;当t为何值时≌,并求此时M点的坐标.23.(8分)约分:(1)(2)24.(8分)甲、乙两人分别从丙、丁两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达丁地后,乙继续前行.设出发后,两人相距,图中折线表示从两人出发至乙到达丙地的过程中与之间的函数关系.根据图中信息,求:(1)点的坐标,并说明它的实际意义;(2)甲、乙两人的速度.25.(10分)如图,△ABC是等腰直角三角形,且∠ACB=90°,点D是AB边上的一点(点D不与A,B重合),连接CD,过点C作CE⊥CD,且CE=CD,连接DE,AE.(1)求证:△CBD≌△CAE;(2)若AD=4,BD=8,求DE的长.26.(10分)如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=1.(1)试说明:△ABC是直角三角形.(2)请求图中阴影部分的面积.
参考答案一、选择题(每小题3分,共30分)1、A【分析】由题意中点E的位置即可对A项进行判断;过点A作AG⊥BC于点G,如图,由等腰三角形的性质可得∠1=∠2=,易得ED∥AG,然后根据平行线的性质即可判断B项;根据平行线的性质和等腰三角形的判定即可判断C项;由直角三角形的性质并结合∠1=的结论即可判断D项,进而可得答案.【详解】解:A、由于点在上,点E不一定是AC中点,所以不一定相等,所以本选项结论错误,符合题意;B、过点A作AG⊥BC于点G,如图,∵AB=AC,∴∠1=∠2=,∵,∴ED∥AG,∴,所以本选项结论正确,不符合题意;C、∵ED∥AG,∴∠1=∠F,∠2=∠AEF,∵∠1=∠2,∴∠F=∠AEF,∴,所以本选项结论正确,不符合题意;D、∵AG⊥BC,∴∠1+∠B=90°,即,所以本选项结论正确,不符合题意.故选:A.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质以及直角三角形的性质等知识,属于基本题型,熟练掌握等腰三角形的判定和性质是解题的关键.2、C【分析】根据角平分线的性质,可得CD=ED,易证得△ADC≌△ADE,可得AC+BE=AB;由等角的余角相等,可证得∠BDE=∠BAC;然后由∠B的度数不确定,可得BE不一定等于DE;又由CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.【详解】解:①正确,∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,∴CD=ED;②正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AB;③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;④错误,因为∠B的度数不确定,故BE不一定等于DE;⑤错误,因为CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.故选:C.【点睛】此题考查了角平分线的性质以及全等三角形的判定与性质.此题比较适中,注意掌握数形结合思想的应用.3、C【解析】试题分析:A、42+52=16+25=41≠62,所以4、5、6不能组成直角三角形;B、72+122=49+144=193≠152,所以7、12、15不能组成直角三角形;C、52+122=25+144=169=132,所以5、12、13可以组成直角三角形;D、82+82=64+64=128≠112,所以8、8、11不能组成直角三角形;故选C.考点:勾股定理的逆定理.4、D【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.5、C【分析】由已知,,故只需添加一组角相等或者BC=EF即可.【详解】解:A:添加,则可用AAS证明;B:添加,则可用ASA证明;C:添加,不能判定全等;D:添加,则,即BC=EF,满足SAS,可证明.故选C.【点睛】本题主要考查全等三角形的判定,掌握三角形全等的判定方法是解题的关键,注意ASS不能判定全等.6、D【分析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.7、B【分析】利用平行线的性质、对顶角的定义、勾股数的定义、实数的性质及外角定理分别判断后即可确定正确的选项.【详解】①两条平行直线被第三条直线所截,内错角相等,故错误,为假命题.②如果∠1和∠2是对顶角,那么∠1=∠2,正确,为真命题.③勾股数必须都是整数,故是一组勾股数错误,为假命题.④=4,4算术平方根是,故为真命题,⑤三角形的一个外角大于任何与之不相邻的一个内角,为假命题.故选B.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的定义、勾股数的定义、实数的性质及外角定理,难度不大,属于基础题.8、D【解析】根据一个正数的算术平方根和平方根的性质可判断A、B;根据=∣a∣可判断C;根据立方根的定义可判断D.【详解】解:=2,故A错误;±=±3,故B错误;=|﹣3|=3,故C错误;=﹣3,故D正确.故选D.【点睛】本题主要考查的是立方根、平方根和算术平方根的性质,熟记性质是解题的关键.9、A【分析】据分式的基本性质,x,y的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【详解】解:根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,A、,B、,C、,D、,故选A.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.10、C【分析】观察的作图痕迹,可得此作图的条件.【详解】解:观察的作图痕迹,可得此作图的已知条件为:∠α,∠β,及线段AB,故已知条件为:两角及夹边,故选C.【点睛】本题主要考查三角形作图及三角形全等的相关知识.二、填空题(每小题3分,共24分)11、cm2.【解析】【试题分析】因为四边形ABCD是长方形,根据矩形的性质得:∠B=∠D=90°,AB=CD.由折叠的性质可知∠DAC=∠EAC,因为AD//BC,根据平行线的性质,得∠DAC=∠ECA,根据等量代换得,∠EAC=∠ECA,根据等角对等边,得AE=CE.设AE=xcm,在Rt△ABE中,利用勾股定理得,AB2+BE2=AE2,即62+(8-x)2=x2,解得x=,∴CE=AE=cm.∴S阴影=·CE·AB=××6=(cm2).【试题解析】∵四边形ABCD是长方形,∴∠B=∠D=90°,AB=CD.由折叠的性质可知可知∠DAC=∠EAC,∵AD//BC,∴∠DAC=∠ECA,∴∠EAC=∠ECA,∴AE=CE.设AE=xcm,在Rt△ABE中,AB2+BE2=AE2,即62+(8-x)2=x2,∴x=,∴CE=AE=cm.∴S阴影=·CE·AB=××6=(cm2).故答案为cm2.【方法点睛】本题目是一道关于勾股定理的运用问题,求阴影部分的面积,重点是求底边AE或者CE,解决途径是利用折叠的性质,对边平行的性质,得出△ACE是等腰三角形,进而根据AE和BE的数量关系,在Rt△ABE中利用勾股定理即可.12、10【解析】(π﹣3.14)0+=1+9=10.故答案为10.13、1【分析】先去分母得整式方程,解整式方程得到,然后利用方程的增根只能为3得到,再解关于m的方程即可.【详解】解:去分母得,解得,因为分式方程会产生增根,而增根只能为3,所以,解得,即当时,分式方程会产生增根.故答案为:1.【点睛】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.14、24【分析】如图,作EH⊥BN交BN于点H,先证得△BHE∼△BCA,然后设BH=t,进而得到EH=3t,HD=1-t,同理得△FPD∼△FEH,求得,进而求得,最后根据,令,得到.【详解】解:如图,作EH⊥BN交BN于点H,∵AC⊥BN,∴EH//AC,∴△BHE∼△BCA,∴设BH=t,则EH=3t,HD=BD-BH=1-t又∵PD⊥BN,∴EH//PD,∴△FPD∼△FEH,∴又∵∴解得:∴,∴,∴,令,则,而,∴∴△BEF面积的最小值是24,故答案为:24.【点睛】本题考查相似三角形的性质与判定综合问题,解题的关键是根据相似三角形的性质构建各边的关系,以及用换元法思想求代数式的最值.15、【分析】根据分式有意义的条件:分母不等于0即可求解.【详解】根据题意得:x﹣1≠0,解得:x≠1.故答案为:≠1.【点睛】本题考查了分式有意义的条件,是一个基础题目.16、.【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB,BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).17、【分析】先根据角平分线的定义可得到,,再根据三角形的外角性质得到,进而等量代换可推出,最后根据三角形的外角性质得到进而等量代换即得.【详解】∵平分∴∵平分外角∴∵的外角∴∵的外角∴∴∵∴故答案为:.【点睛】本题主要考查了外角性质及角平分线的定义,利用三角形的外角等于和它不相邻的内角之和转化角是解题关键.18、x>1.【详解】∵直线y=x+b与直线y=kx+6交于点P(1,5),∴由图象可得,当x>1时,x+b>kx+6,即不等式x+b>kx+6的解集为x>1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(共66分)19、不等式组的解集是:1≤x<4,最小整数解是1【分析】通过去分母,移项,合并同类项,未知数系数化为1,即可求解.【详解】,解不等式①得:x≥1,解不等式②得:x<4,∴不等式组的解集是:1≤x<4,∴最小整数解是1.【点睛】本题主要考查一元一次不等式组的解法,掌握解一元一次不等式组的基本步骤,是解题的关键.20、(1)=;(2)①;②【分析】(1)根据图2中,大正方形的面积的两种求法即可得出结论;(2)①根据完全平方公式的变形计算即可;②设,,则,然后完全平方公式的变形计算即可.【详解】解:(1)图2大正方形的边长为a+b,面积为;也可以看作两个正方形和两个长方形构成,其面积为.∴这个等式为=(2)①∵,∴.∴.∵,∴.②设,,则.∵,∴.∵,∴=.即.【点睛】此题考查的是完全平方公式的几何意义和应用,掌握正方形面积的求法和完全平方公式的变形是解决此题的关键.21、(1)80人;(2)11.5元;(3)10元.【解析】试题分析:(1)参加这次夏令营活动的初中生所占比例是:1﹣10%﹣20%﹣30%=40%,就可以求出人数.(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,根据平均数公式就可以求出平均数.(3)因为初中生最多,所以众数为初中生捐款数.试题解析:解:(1)参加这次夏令营活动的初中生共有200×(1-10%-20%-30%)=80人;
(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,
所以平均每人捐款==11.5(元);
(3)因为初中生最多,所以众数为10(元).22、(1)A(0,4),B(0,2);(2);(3)当t=2或1时,△COM≌△AOB,此时M(2,0)或(﹣2,0).【分析】(1)由直线L的函数解析式,令y=0求A点坐标,x=0求B点坐标;(2)由面积公式S=OM•OC求出S与t之间的函数关系式;(3)若△COM≌△AOB,OM=OB,则t时间内移动了AM,可算出t值,并得到M点坐标.【详解】(1)∵y=﹣x+2,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t≤4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;∴的面积S与M的移动时间t之间的函数关系式为:(3)∵OC=OA,∠AOB=∠COM=90°,∴只需OB=OM,则△COM≌△AOB,即OM=2,此时,若M在x轴的正半轴时,t=2,M在x轴的负半轴,则t=1.故当t=2或1时,△COM≌△AOB,此时M(2,0)或(﹣2,0).【点睛】本题考查了一次函数的性质和三角形的面积公式,以及全等三角形的判定与性质,理解全等三角形的判定定理是关键.23、(1);(2)【分析】(1)直接将分子与分母分解因式进而化简得出答案;(2)直接将分子与分母分解因式进而化简得出答案.【详解】解:(1)=;(2)原式==.【点睛】平方差、完全平方和、完全平方差公式是初中数学必需完全掌握的知识点.24、(1)B(1,0),点B的实际意义是甲、乙两人经过1小时相遇;(2)6km/h,4km/h.【分析】(1)两人相向而行,当相遇时y=0本题可解;
(2)分析图象,可知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版八年级物理上册《2.2声音的特性》同步测试题及答案
- 环境因素对纸质文献保存影响分析
- 高一化学成长训练:第二单元化学是社会可持续发展的基础
- 加油站隐患自查自纠以及判定依据
- 2024高中地理第五章交通运输布局及其影响章末总结提升练含解析新人教版必修2
- 2024高中生物专题3植物的组织培养技术课题2月季的花药培养课堂演练含解析新人教版选修1
- 2024高中语文第三单元现当代散文第9课记梁任公先生的一次演讲学案新人教版必修1
- 2024高考地理一轮复习第十九章第2讲世界热点国家教案含解析新人教版
- 2024高考地理一轮复习专练78南美洲与巴西含解析新人教版
- 2024秋季期末散学典礼上校长讲话:用自律、书香与实践填满你的寒假行囊
- 电力一把手讲安全
- 外贸经理年度工作总结
- 儿童全身麻醉插管护理
- 非甾体抗炎药围术期镇痛专家共识(2024 版)解读
- 矿山地质环境监测数据可视化
- 2021年青岛市中考物理试卷和答案
- 2024-2025学年五年级上册数学人教版期末测试题
- 专项14-因式分解-专题训练(30道)
- ECE-R90-欧盟第3版-中文版(R090r3e-01)
- 2024-2025学年重庆市北碚区三上数学期末监测试题含解析
- 大宗贸易居间协议2024年
评论
0/150
提交评论