版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省师宗县2025届数学八年级第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.> D.m2>n22.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是()A.点A B.点B C.点C D.点D3.下列二次根式中,最简二次根式是()A. B. C. D.4.如图是一个三级台阶,它的每一级的长、宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬()A.13cm B.40cm C.130cm D.169cm5.元旦期间,某水果店第一天用320元钱购进苹果销售,第二天又用800元钱购进这种苹果,所购数量是第一天购进数量的2倍,但每千克苹果的价格比第一天购进价多1元,若设水果店第一天购进水果千克苹果,则可列方程为().A. B. C. D.6.下列各运算中,计算正确的是()A. B. C. D.7.下列一些标志中,可以看作是轴对称图形的是()A. B. C. D.8.如图,长方形被分割成个正方形和个长方形后仍是中心对称图形,设长方形的周长为,若图中个正方形和个长方形的周长之和为,则标号为①正方形的边长为()A. B. C. D.9.49的平方根为()A.7 B.-7 C.±7 D.±10.在下列图形中是轴对称图形的是()A. B.C. D.11.如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条图中的AB,CD两根木条,这样做是运用了三角形的A.全等性 B.灵活性 C.稳定性 D.对称性12.如图,在长方形ABCD中,AB=6,BC=8,∠ABC的平分线交AD于点E,连接CE,过B点作BF⊥CE于点F,则BF的长为()A. B. C. D.二、填空题(每题4分,共24分)13.计算:__________.14.若分式方程=无解,则增根是_________15.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=6,则点P到BC的距离是_______.16.已知,求=___________.17.如果实数x满足,那么代数式的值为.18.甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温方差大小关系为s甲2__________s乙2(填“>”或“<”).三、解答题(共78分)19.(8分)如图,△ABC和△ADE中,AB=AD,BC=DE,∠B=∠D,边AD与边BC交于点P(不与点B、C重合),点B、E在AD异侧,I为△APC的内心(三条角平线的交点).(1)求证:∠BAD=∠CAE;(2)当∠BAC=90°时,①若AB=16,BC=20时,求线段PD的最大值;②若∠B=36°,∠AIC的取值范围为m°<∠AIC<n°,求m、n的值.20.(8分)已知:两个实数满足.(1)求的值;(2)求的值.21.(8分)计算:[(x2+y2)﹣(x﹣y)2+2y(x﹣y)]÷4y.22.(10分)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?23.(10分)本学期我们学习了角平分线的性质定理及其逆定理,那么,你是否还记得它们的具体内容.(1)请把下面两个定理所缺的内容补充完整:角平分线的性质定理:角平分线上的点到______的距离相等.角平分线性质定理的逆定理:到角的两边距离相等的点在______.(2)老师在黑板上画出了图形,把逆定理的已知、求证写在了黑板上,可是有些内容不完整,请你把内容补充完整.已知:如右图,点是内一点,,,垂足分别为、,且______.求证:点在的______上(3)请你完成证明过程:(4)知识运用:如图,三条公路两两相交,现在要修建一个加油站,使加油站到三条公路的距离相等,加油站可选择的位置共有______处.24.(10分)等腰三角形中,,,点为边上一点,满足,点与点位于直线的同侧,是等边三角形,(1)①请在图中将图形补充完整:②若点与点关于直线轴对称,______;(2)如图所示,若,用等式表示线段、、之间的数量关系,并说明理由.25.(12分)解方程:解下列方程组(1)(2)26.先化简再求值:(1),其中,;(2),其中.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选D.【考点】不等式的性质.2、D【分析】直接利用已知网格结合三个点中存在两个点关于一条坐标轴对称,可得出原点位置.【详解】如图所示:原点可能是D点.故选D.【点睛】此题主要考查了关于坐标轴对称点的性质,正确建立坐标系是解题关键.3、A【解析】根据最简二次根式的定义逐项分析即可.【详解】A.不含分母,并且也都不含有能开的尽方的因式,是最简二次根式,故符合题意;B.=,被开方式含分母,不最简二次根式,故不符合题意;C.被开方式含分母,不最简二次根式,故不符合题意;D.被开方式含能开的尽方的因式9,不最简二次根式,故不符合题意;故选A.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.4、C【解析】将台阶展开,如图所示,因为BC=3×10+3×30=120,AC=50,由勾股定理得:cm,故正确选项是C.5、D【分析】设该店第一次购进水果千克,则第二次购进水果千克,然后根据每千克水果的价格比第一次购进的贵了1元,列出方程求解即可.【详解】设该商店第一次购进水果x千克,根据题意得:,故选:D.【点睛】本题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.6、C【分析】根据积的乘方、同底数幂的除法、多项式的乘法逐项判断即可.【详解】A.,错误;B.,错误;C.,正确;D.,错误.故选C.【点睛】本题考查积的乘方、同底数幂的除法、多项式的乘法等知识,熟练掌握各计算公式是解题的关键.7、B【分析】根据轴对称图形的定义逐项分析判断即可.【详解】解:A、C、D不符合轴对称图形的定义,故不是轴对称图形;B符合轴对称图形的定义,故B是轴对称图形.故选B.【点睛】本题考查了轴对称图形的识别,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.8、B【分析】设两个大正方形边长为x,小正方形的边长为y,由图可知周长和列方程和方程组,解答即可.【详解】解:长方形被分成个正方形和个长方形后仍是中心对称图形,两个大正方形相同、个长方形相同.设小正方形边长为,大正方形的边长为,小长方形的边长分别为、,大长方形边长为、.长方形周长,即:,,.个正方形和个长方形的周长和为,,,.标号为①的正方形的边长.故选:B.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.9、C【分析】根据平方根的定义进行求解即可.【详解】.∵=49,则49的平方根为±7.故选:C10、B【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11、C【解析】解:三角形具有稳定性,其他多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变,故这样做是运用了三角形的稳定性故选:C12、C【分析】先根据矩形的性质,求出CD和DE的长度,再根据勾股定理求出CE的长度,再利用三角形面积公式求出BF的长即可.【详解】∵四边形ABCD是矩形,∴AB=CD=6,BC=AD=8,BC∥AD,∴∠CBE=∠AEB,∵BE平分∠ABC,∴∠ABE=∠CBE=∠AEB,∴AE=AB=6,∴DE=2,∴,∵S△BCE=S矩形ABCD=24,∴×2×BF=24∴BF=故选:C.【点睛】本题考查了矩形和三角形的综合问题,掌握矩形的性质、勾股定理以及三角形面积公式是解题的关键.二、填空题(每题4分,共24分)13、【解析】直接计算即可得解.【详解】解:原式===故答案为.【点睛】此题主要考查二次根式的混合运算,熟练掌握法则即可解题.14、【分析】根据分式方程的解以及增根的定义进行求解即可.【详解】解:∵分式方程无解∴分式方程有增根∴∴增根是.故答案是:【点睛】本题考查了分式方程的解、增根定义,明确什么情况下分式方程无解以及什么是分式方程的增根是解题的关键.15、3【解析】分析:过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等,可得PA=PE,PD=PE,那么PE=PA=PD,又AD=6,进而求出PE=3.详解:如图,过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=6,∴PA=PD=3,∴PE=3.故答案为3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线是解题的关键.16、.【解析】已知等式整理得:,即则原式故答案为17、5【解析】试题分析:∵由得,∴.18、>【分析】根据方差的意义:方差越小则波动越小,稳定性也越好,结合气温统计图即可得出结论.【详解】解:由气温统计图可知:乙地的气温波动小,比较稳定∴乙地气温的方差小∴故答案为:>.【点睛】此题考查的是比较方差的大小,掌握方差的意义:方差越小则波动越小,稳定性也越好是解决此题的关键.三、解答题(共78分)19、(1)见解析;(2)①;②,【分析】(1)运用已知条件,依据SAS可证,从而可得,减去重合部分,即得所求证;(2)①,,当时,最小,=最大,运用等面积法求出,即可得出结论;②用三角形内角和定理求出,运用内心,求出,设,则可用α表示,根据三角形内角和定理,∠AIC也可用α表示,由于,所以∠AIC的取值范围也能求出来.【详解】(1)证明:在与中,(SAS)即(2)①中,,由勾股定理,得,而.当时,最小,最大,此时,,即,解得,的最大值②如图,,,,则,.为的内心,、分别平分,,,,又,,即,,.【点睛】本题考查三角形全等的判定和性质、直角三角形中的动点问题、三角形的角平分线、三角形的内角和定理,第(2)(3)问解题的关键在于转化问题,用易求的来表示待求的.20、(1)7;(2)-1.【分析】(1)利用完全平方和公式易求解;(2)先通分再利用完全平方和公式即可.【详解】解:(1)(2)【点睛】本题主要考查了完全平方公式,灵活利用完全平方公式进行配方是解题的关键.21、x﹣y【分析】首先利用完全平方公式计算小括号,然后再去括号,合并同类项,最后再计算除法即可.【详解】解:原式=(x2+y2﹣x2+2xy﹣y2+2xy﹣2y2)÷4y,=(4xy﹣2y2)÷4y,=x﹣y.【点睛】此题主要考查了整式的混合运算,关键是掌握计算顺序:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.22、(1)购进甲型号口罩300袋,购进乙种型号口罩200袋;(2)每袋乙种型号的口罩最多打9折【解析】(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,根据“小明的爸爸用12000元购进甲、乙两种型号的口罩,销售完后共获利2700元”列出方程组,解方程组即可求解;(2)设每袋乙种型号的口罩打m折,根据“两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元”列出不等式,解不等式即可求解.【详解】(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,根据题意可得,,解得:,答:该商店购进甲种型号口罩300袋,乙种型号口罩200袋;(2)设每袋乙种型号的口罩打m折,由题意可得,300×5+400(0.1m×36-30)≥2460,解得:m≥9,答:每袋乙种型号的口罩最多打9折.【点睛】本题考查了二元一次方程组的应用及一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式求解.23、(1)这个角的两边,角平分线上;(2)PE,平分线上;(3)见解析;(1)1【分析】(1)根据角平分线的性质定理和判定定理解答;
(2)根据题意结合图形写出已知;
(3)作射线OP,证明Rt△OPD≌Rt△OPE即可;
(1)根据角平分线的性质定理解答.【详解】解:(1)角平分线性质定理:角平分线上的点到这个角的两边的距离相等.
角平分线判定定理:到角的两边距离相等的点在角平分线上,
故答案为:这个角的两边;角平分线上;
(2)已知:如图1,点P是∠AOB内一点,PD⊥AO,PE⊥OB,垂足分别为D、E,且PD=PE,求证:点P在∠AOB的平分线上.
故答案为:PE;平分线上;(3)如图:作射线,,,在和中,∴∴∴是的平分线,即点在的平分线上.(1)如图2,M、N、G、H即为所求,
故答案为:1.【点睛】本题考查的是角平分线的性质定理和判定定理的应用,掌握角的平分线上的点到角的两边的距离相等、到角的两边距离相等的点在角平分线上是解题的关键.24、(1)①画图见解析;②75°;(2)AB=BE+BD,证明见解析.【分析】(1)①根据题意直接画出图形;②根据对称性判断出AB⊥DE,再判断出∠DAE=60°,可以求出∠BAC,即可得出结论;(2)先判断出∠ADF=∠EDB,进而判断出△BDE≌△FDA,即可得出结论.【详解】解:(1)①根据题意,补全图形如图所示,②当点D与点E关于直线AB轴对称时,∴AB⊥DE,∵△ADE是等边三角形,AB⊥DE,∴∠DAE=60°,AD=AE,∴∠BAC=∠DAE=30°,∵AB=AC,∴∠ACB=(180°-∠BAC)=75°,故答案为75°;(2)AB=BE+BD,证明如下:如图,在BA上取一点F,使BF=BD,DE与AB的交于H,∵△ADE是等边三角形,∴AD=ED,∠EAD=∠AED=60°,在△ABC中,AB=AC,∠ACB=80°,∴∠ABC=∠ACB=80°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 42707.2-2024数控机床远程运维第2部分:故障诊断与预测性维护
- 着力构建泛在可及的终身教育体系
- 2025新译林版英语七年级下单词默写表
- 湖南部分学校2024-2025学年高三年级上册9月联考英语试题
- 公司年终总结会议通知-企业管理
- 2024年电离辐射计量标准器具项目投资申请报告代可行性研究报告
- 2025届高考英语二轮复习专项(中国日报新闻改编)时事新闻语法填空 (社会与体育)(3篇含答案)
- 强制清算中应注意的问题
- 强化硬件-拓展软件-细化预算管理工作
- 单选之连词 介词(解析版)
- 肩痹(肩袖损伤)中医临床路径及入院标准2020版
- 协同办公平台应用系统接入要求
- 跟踪审计服务 投标方案(技术方案)
- (打印)初一英语语法练习题(一)
- 2024届温州高三一模数学试题含答案
- 慢性胆囊炎的护理问题及护理措施
- 4s店防污染应急预案
- 2023北京初一数学各区第一学期期末考试题汇编(含标准答案)
- 小脑梗死的护理查房
- 人教版四年级上册三位数乘两位数竖式练习400题及答案
- 大学生国防教育
评论
0/150
提交评论