北京西城师大附中2025届数学八年级第一学期期末检测模拟试题含解析_第1页
北京西城师大附中2025届数学八年级第一学期期末检测模拟试题含解析_第2页
北京西城师大附中2025届数学八年级第一学期期末检测模拟试题含解析_第3页
北京西城师大附中2025届数学八年级第一学期期末检测模拟试题含解析_第4页
北京西城师大附中2025届数学八年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京西城师大附中2025届数学八年级第一学期期末检测模拟试题测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=3,b=﹣2 C.a=﹣3,b=﹣2 D.a=﹣2,b=﹣32.如图,在等边△ABC中,AB=15,BD=6,BE=3,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是()A.8 B.10 C. D.123.如图,AO=,CO=DO,AD与BC交于E,∠O=40º,∠=25º,则∠的度数是(

)A. B. C. D.4.已知=6,=3,则的值为()A.9 B. C.12 D.5.在直角坐标系中,函数与的图像大数是()A. B.C. D.6.如图,已知和都是等边三角形,且、、三点共线.与交于点,与交于点,与交于点,连结.以下五个结论:①;②;③;④是等边三角形;⑤.其中正确结论的有()个A.5 B.4 C.3 D.27.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=28.如图,在Rt△ABC中,∠C=90°,点D为AB边中点,DE⊥AB,并与AC边交于点E,如果∠A=15°,BC=1,那么AC等于()A.2 B. C. D.9.下列各式从左到右的变形属于分解因式的是()A. B.C. D.10.在△ABC中,a、b、c分别是∠A,∠B,∠C的对边,若(a﹣2)2+|b﹣2|+=0,则这个三角形一定是()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.钝角三角形11.如图,,,,下列条件中不能判断的是()A. B. C. D.12.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A. B. C.4 D.5二、填空题(每题4分,共24分)13.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的中位数是__________岁.14.汽车开始行驶时,油箱中有油30升,如果每小时耗油4升,那么油箱中的剩余油量y(升)和工作时间x(时)之间的函数关系式是____________;15.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为________.16.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,则∠BPE=_______________.17.如图,一系列“阴影梯形”是由轴、直线和过轴上的奇数,,,,,,所对应的点且与轴平行的直线围城的.从下向上,将面积依次记为,,,,(为正整数),则____,____.18.在如图所示的长方形中放置了8个大小和形状完全相同的小长方形,设每个小长方形的长为x,宽为y,根据图中提供的数据,列方程组_______.三、解答题(共78分)19.(8分)在平面直角坐标系中,为原点,点,点,把绕点逆时针旋转,得,点旋转后的对应点为、,记旋转角为.如图,若,求的长.20.(8分)如图,在平面直角坐标系中,直线AB交x轴于点B(6,0),交y轴于点C(0,6),直线AB与直线OA:y=x相交于点A,动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.21.(8分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.22.(10分)(1)作图发现:如图1,已知,小涵同学以、为边向外作等边和等边,连接,.这时他发现与的数量关系是.(2)拓展探究:如图2,已知,小涵同学以、为边向外作正方形和正方形,连接,,试判断与之间的数量关系,并说明理由.(3)解决问题如图3,要测量池塘两岸相对的两点,的距离,已经测得,,米,,则米.23.(10分)已知2x-1的算术平方根是3,y+3的立方根是-1,求代数式2x+y的平方根24.(10分)小明在学了尺规作图后,通过“三弧法”作了一个,其作法步骤是:①作线段,分别以为圆心,取长为半径画弧,两弧的交点为C;②以B为圆心,长为半径画弧交的延长线于点D;③连结.画完后小明说他画的的是直角三角形,你认同他的说法吗,请说明理由.25.(12分)网购是现在人们常用的购物方式,通常网购的商品为防止损坏会采用盒子进行包装,均是容积为立方分米无盖的长方体盒子(如图).(1)图中盒子底面是正方形,盒子底面是长方形,盒子比盒子高6分米,和两个盒子都选用相同的材料制作成侧面和底面,制作底面的材料1.5元/平方分米,其中盒子底面制作费用是盒子底面制作费用的3倍,当立方分米时,求盒子的高(温馨提示:要求用列分式方程求解).(2)在(1)的条件下,已知盒子侧面制作材料的费用是0.5元/平方分米,求制作一个盒子的制作费用是多少元?(3)设的值为(2)中所求的一个盒子的制作费用,请分解因式;.26.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.

参考答案一、选择题(每题4分,共48分)1、C【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【详解】解:当a=3,b=2时,a2>b2,而a>b成立,故A选项不符合题意;当a=3,b=﹣2时,a2>b2,而a>b成立,故B选项不符合题意;当a=﹣3,b=﹣2时,a2>b2,但a>b不成立,故C选项符合题意;当a=﹣2,b=﹣3时,a2>b2不成立,故D选项不符合题意;故选:C.【点睛】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.2、D【分析】首先利用等边三角形的性质和含30°直角三角形的运用,判定△DPE≌△FDH,△DF2Q≌△ADE,然后利用全等三角形的性质,得出点F运动的路径长.【详解】∵△ABC为等边三角形,∴∠B=60°,过D点作DE′⊥AB,过点F作FH⊥BC于H,如图所示:则BE′=BD=3,∴点E′与点E重合,∴∠BDE=30°,DE=BE=3,∵△DPF为等边三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,,∴△DPE≌△FDH(AAS),∴FH=DE=3,∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为3,当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则四边形DF1F2Q是矩形,∵∠BDE=30°,∠ADF2=60°,∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,∵∠ADE+∠DAE=90°,∴∠F2DQ=∠DAE,在△DF2Q和△ADE中,,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴当点P从点E运动到点A时,点F运动的路径长为12,故选:D.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是作好辅助线.3、A【解析】先证明△OAD≌△OBC,从而得到∠A=∠B,再根据三角形外角的性质求得∠BDE的度数,最后根据三角形的内角和定理即可求出∠BDE的度数.【详解】解:在△OAD和△OBC中,,∴△OAD≌△OBC(SAS)∴∠A=∠B=25°,∵∠BDE=∠O+∠A=40°+25°=65°,∴∠BED=180°-∠BDE-∠A=180°-65°-26°=90°,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA和HL,做题时,要根据已知条件结合图形进行思考.4、C【分析】根据同底数幂的除法的性质的逆用和幂的乘方的性质计算即可.【详解】解:∵xm=6,xn=3,

∴x2m-n=(xm)2÷xn=62÷3=1.

故选:C.【点睛】本题考查了同底数的幂的除法,幂的乘方的性质,把原式化成(xm)2÷xn是解题的关键.5、B【分析】根据四个选项图像可以判断过原点且k<0,,-k>0即可判断.【详解】解:A.与图像增减相反,得到k<0,所以与y轴交点大于0故错误;B.与图像增减相反,得到k<0,所以与y轴交点大于0故正确;C.与图像增减相反,为递增一次函数且不过原点,故错误;D.过原点,而图中两条直线都不过原点,故错误.故选B【点睛】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.6、A【分析】根据等边三角形的性质、全等三角形的判定与性质对各结论逐项分析即可判定.【详解】解:①∵△ABC和△CDE为等边三角形。∴AC=BC,CD=CE,∠BCA=∠DCE=60°∴∠ACD=∠BCE在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,CD=CE∴△ACD≌△BCE(SAS)∴AD=BE,∠ADC=∠BEC,则①正确;②∵∠ACB=∠DCE=60°∴∠BCD=60°∴△DCE是等边三角形∴∠EDC=60°=∠BCD∴BC//DE∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,②正确;③∵∠DCP=60°=∠ECQ在△CDP和△CEQ中,∠ADC=∠BEC,CD=CE,∠DCP=∠ECQ∴△CDP≌△CEQ(ASA)∴CР=CQ∴∠CPQ=∠CQP=60°,∴△PC2是等边三角形,③正确;④∠CPQ=∠CQP=60°∴∠QPC=∠BCA∴PQ//AE,④正确;⑤同④得△ACP≌△BCQ(ASA)∴AP=BQ,⑤正确.故答案为A.【点睛】本题主要考查了等边三角形的性质、全等三角形的判定与性质等知识点,熟练掌握全等三角形的判定与性质是解答本题的关键.7、A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.8、C【分析】根据线段垂直平分线的性质得到AE=BE,根据等腰三角形的性质得到∠ABE=∠A=15°,利用三角形外角的性质求得∠BEC=30°,再根据30°角直角三角形的性质即可求得结论.【详解】∵点D为AB边中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∴∠ABE=∠A=15°,∴∠BEC=∠A+∠ABE=30°,∵∠C=90°,∴BE=AE=2BC=2,CE=BC=,∴AC=AE+CE=2+,故选C.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、30°角直角三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.9、B【分析】根据因式分解的是多项式,分解的结果是积的形式,进行判断即可.【详解】A.,不是因式分解,不符合题意;B.,是运用平方差公式进行的因式分解,符合题意;C.,最后结果不是乘积的形式,不属于因式分解,不符合题意;D.,不是在整式范围内进行的分解,不属于因式分解,不符合题意.故选:B【点睛】本题考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,理解因式分解的定义是解决此类问题的关键.10、C【分析】根据非负数的性质列出方程,解出a、b、c的值后,再用勾股定理的逆定理进行判断.【详解】解:根据题意,得a-2=0,b-=0,c-2=0,解得a=2,b=,c=2,∴a=c,又∵,∴∠B=90°,∴△ABC是等腰直角三角形.故选C.【点睛】本题考查了非负数的性质和勾股定理的逆定理,属于基础题型,解题的关键是熟悉非负数的性质,正确运用勾股定理的逆定理.11、B【分析】先证明∠A=∠D,然后根据全等三角形的判定方法逐项分析即可.【详解】解:如图,延长BA交EF与H.∵AB∥DE,∴∠A=∠1,∵AC∥DF,∴∠D=∠1,∴∠A=∠D.A.在△ABC和△DEF中,∵AB=DE,∠A=∠D,AC=DF,∴△ABC≌△DEF(SAS),故A不符合题意;B.EF=BC,无法证明△ABC≌△DEF(ASS);故B符合题意;C.在△ABC和△DEF中,∵∠B=∠E,∠A=∠D,AC=DF,∴△ABC≌△DEF(AAS),故C不符合题意;D.∵EF∥BC,∴∠B=∠2,∵AB∥DE,∴∠E=∠2,∴∠B=∠E,在△ABC和△DEF中,∵∠B=∠E,∠A=∠D,AC=DF,∴△ABC≌△DEF(AAD),故D不符合题意;故选B.【点睛】本题主要考查了平行线的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA、SSA不能判定两个三角形全等.12、C【分析】设BQ=x,则由折叠的性质可得DQ=AQ=9-x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【详解】设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=1.故线段BQ的长为1.故选:C.【点睛】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.二、填空题(每题4分,共24分)13、【分析】由图得到男子足球队的年龄及对应的人数,再根据中位数的概念即可得答案.【详解】由图可知:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∵∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,∵把这组数据从小到大排列11名和第12名的年龄分别是15岁、15岁,∴这些队员年龄的中位数是15岁,故答案为:15【点睛】本题考查了求一组数据的中位数.求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果数据有偶数个,则中间两个数据的平均数就是这组数据的中位数;熟练掌握中位数的等于是解题关键.14、y=30-4x【解析】试题解析:∵每小时耗油4升,

∵工作x小时内耗油量为4x,

∵油箱中有油30升,

∴剩余油量y=30-4x.15、125°【详解】∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°−∠A=180°−70°=110°∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°∴∠P=180°−(∠2+∠4)=180°−55°=125°故答案为125°.16、60°【分析】由等边三角形的性质得出AB=CA,∠BAD=∠ACE=60°,由SAS即可证明△ABD≌△CAE,得到∠ABD=∠CAE,利用外角∠BPE=∠BAP+∠ABD,即可解答.【详解】解:∵△ABC是等边三角形,∴AB=CA,∠BAD=∠ACE=60°,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴∠ABD=∠CAE,∵∠BPE=∠BAP+∠ABD,∴∠BPE=∠BAP+∠CAE=∠BAC=60°.故答案为:60°.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.17、;【分析】由图得:【详解】由图得:∵直线和过轴上的奇数,,,,,,所对应的点A、B、C、D、E、F∴当y=1时,x=-1,故A(-1,1)当y=3时,x=-3,故B(-3,3)当y=5时,x=-5,故C(-5,5)当y=7时,x=-7,故D(-7,7)当y=9时,x=-9,故E(-9,9)当y=11时,x=-11,故F(-11,11)可得:故答案为:4;4(2n-1)【点睛】本题主要考查了一次函数综合题目,根掘找出规律,是解答本题的关键.18、【分析】设小长方形的长为x,宽为y,根据长方形ABCD的长为17,宽的两种不同的表达式列出方程组即可得解;【详解】解:设小长方形的长为x,宽为y,根据题意得:,整理得:;故答案为:【点睛】本题考查了二元一次方程组的应用,根据图形,找到合适的等量关系列出方程组是解题的关键.三、解答题(共78分)19、.【分析】先利用勾股定理计算出,再根据旋转的性质得,,则可判定为等腰直角三角形,然后根据等腰直角三角形的性质求的长;【详解】解:点,点,,,,绕点逆时针旋转,得△,,,为等腰直角三角形,;【点睛】本题考查了旋转的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是会利用两点坐标求两点之间的距离.20、(1)y=﹣x+6;(2)12;(3)存在满足条件的点M,其坐标为(1,)或(1,5)或(﹣1,7)【分析】(1)由B、C坐标,根据待定系数法可求得直线AB的解析式;(2)联立直线AB和直线OA解析式可求得A点坐标,则可求得△OAC的面积;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【详解】解:(1)设直线AB的解析式是y=kx+b,根据题意得,解得,∴直线AB的解析式为y=﹣x+6;(2)联立直线OA和直线AB的解析式可得,解得,∴A(4,2),∴S△OAC=×6×4=12;(3)由题意可知S△OMC=S△OAC=×12=3,设M点的横坐标为t,则有S△OMC=×OC•|t|=3|t|,∴3|t|=3,解得t=1或t=﹣1,当点t=﹣1时,可知点M在线段AC的延长线上,∴y=﹣(﹣1)+6=7,此时M点坐标为(﹣1,7);当点t=1时,可知点M在线段OA或线段AC上,在y=x中,x=1可得y=,代入y=﹣x+6可得y=5,∴M的坐标是(1,);在y=﹣x+6中,x=1则y=5,∴M的坐标是(1,5);综上可知存在满足条件的点M,其坐标为(1,)或(1,5)或(﹣1,7).【点睛】本题考查待定系数法求一次函数解析式、解二元一次方程组和三角形面积,解题的关键是掌握待定系数法求一次函数解析式、解二元一次方程组和三角形面积.21、(1)证明见解析;(2)15,26,37,48,59;(3).【解析】试题分析:(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,由“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.试题解析:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.考点:因式分解的应用;新定义;因式分解;阅读型.22、(1)BE=CD;(2)BE=CD,理由见解析;(3)200.【分析】(1)利用等边三角形的性质得出,然后有,再利用SAS即可证明,则有;(2)利用正方形的性质得出,然后有,再利用SAS即可证明,则有;(3)根据前(2)问的启发,过作等腰直角,连接,,同样的方法证明,则有,在中利用勾股定理即可求出CD的值,则BE的值可求.【详解】(1)如图1所示:和都是等边三角形,,,即,在和中,,.(2),四边形和均为正方形,,,,,在和中,,,(3)如图3,过作等腰直角,,则米,,米,连接,,∴即在和中,,,,,在中,米,米,根据勾股定理得:(米),则米.【点睛】本题主要考查全等三角形的判定及性质,正方形的性质,等边三角形的性质和等腰直角三角形的性质,掌握全等三角形的判定及性质是解题的关键.23、±【分析】利用算术平方根、立方根定义求出x与y的值,进而求出2x+y的值,即可求出平方根.【详解】解:∵2x-1的算术平方根为3,

∴2x-1=9,

解得:x=5,

∵y+3的立方根是-1,

∴y+3=-1,

解得:y=-8,∴2x+y=2×5-8=2,

∴2x+y的平方根是±.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论