上海市嘉定区南翔镇怀少学校2025届数学八年级第一学期期末考试模拟试题含解析_第1页
上海市嘉定区南翔镇怀少学校2025届数学八年级第一学期期末考试模拟试题含解析_第2页
上海市嘉定区南翔镇怀少学校2025届数学八年级第一学期期末考试模拟试题含解析_第3页
上海市嘉定区南翔镇怀少学校2025届数学八年级第一学期期末考试模拟试题含解析_第4页
上海市嘉定区南翔镇怀少学校2025届数学八年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市嘉定区南翔镇怀少学校2025届数学八年级第一学期期末考试模拟试题学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB2.对于实数,,我们用符号表示,两数中较小的数,若,则的值为().A.1,,2 B.,2 C. D.23.设△ABC的三边分别为a,b,c,满足下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=90° B.b2=a2-c2C.∠A:∠B:∠C=3:4:5 D.a:b:c=5:12:134.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)5.一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A.3cm B.5cm C.7cm D.11cm6.要说明命题“若ab,则a2b2”是假命题,能举的一个反例是()A.a3,b2 B.a4,b1 C.a1,b0 D.a1,b27.如图所示的图案中,是轴对称图形且有两条对称轴的是()A. B. C. D.8.下列表情中,是轴对称图形的是()A. B. C. D.9.在中,与的平分线交于点I,过点I作交BA于点D,交AC于点E,,,,则下列说法错误的是A.和是等腰三角形 B.I为DE中点C.的周长是8 D.10.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10 B.11 C.12 D.13二、填空题(每小题3分,共24分)11.点M(3,﹣1)到x轴距离是_____.12.如图,在中,,,垂足分别为,,,交于点.请你添加一个适当的条件,使≌.添加的条件是:____.(写出一个即可)13.点(2+a,3)关于y轴对称的点的坐标是(﹣4,2﹣b),则ab=_____.14.如图在3×3的正方形网格中有四个格点A.B.C.D,以其中一点为原点,网格线所在直线为坐标轴建立直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是____点.15.计算:=___________.16.点(-2,1)点关于x轴对称的点坐标为___;关于y轴对称的点坐标为__.17.如图是甲、乙两名跳远运动员的10次测验成绩(单位:米)的折线统计图,观察图形,写出甲、乙这10次跳远成绩之间的大小关系:_____(填“>“或“<”).18.如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是_____.三、解答题(共66分)19.(10分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)试说明△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.20.(6分)先化简,再求代数式的值,其中.21.(6分)甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表学生数与代数空间与图形统计与概率综合与实践平均成绩方差甲8793859189乙8996809133.5(1)请计算甲的四项成绩的方差和乙的平均成绩;(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按计算,哪个学生数学综合素质测试成绩更好?请说明理由.22.(8分)在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A、B、C三个等级,其中相应等级的得分依次记为A级100分、B级90分、C级80分,达到B级以上(含B级)为优秀,其中8(2)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C级的人数为_______人;(3)小明同学根据以上信息制作了如下统计表:平均数(分)中位数(分)方差8(1)班m90n8(2)班919029请分别求出m和n的值,并从优秀率和稳定性方面比较两个班的成绩;23.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.(计算方差的公式:s2=[])24.(8分)如图,直线的解析表达式为,且与轴交于点.直线经过点,直线交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)在轴上求作一点,使的和最小,直接写出的坐标.25.(10分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2,C2的坐标.26.(10分)已知:等边中.(1)如图1,点是的中点,点在边上,满足,求的值.(2)如图2,点在边上(为非中点,不与、重合),点在的延长线上且,求证:.(3)如图3,点为边的中点,点在的延长线上,点在的延长线上,满足,求的值.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据平行四边形的判定方法一一判断即可;【详解】解:A、由AE=CF,可以推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;B、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形;C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;故选:B.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、D【分析】结合题意,根据分式、绝对值的性质,分、两种情况计算,即可得到答案.【详解】若,则∴∴∴,符合题意;若,则当时,无意义当时,∴,故不合题意∴故选:D.【点睛】本题考查了分式、绝对值的知识;解题的关键是熟练掌握分式、绝对值的性质,从而完成求解.3、C【分析】根据题意运用直角三角形的判定方法,当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形,从而分别判定即可.【详解】解:A.∵∠A+∠B=90°,∴=90°,△ABC是直角三角形;B.∵b2=a2-c2∴△ABC是直角三角形;C.∵∠A:∠B:∠C=3:4:5,∴△ABC不是直角三角形;D.∵a:b:c=5:12:13∴,△ABC是直角三角形.故选:C.【点睛】本题主要考查勾股定理的逆定理、直角三角形的判定方法,灵活的应用此定理是解决问题的关键.4、C【解析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5、C【解析】设第三边长为xcm,则8﹣3<x<3+8,5<x<11,故选C.6、D【分析】作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.【详解】解:A、a=3,b=2时.满足a>b,则a2>b2,不能作为反例,错误;B、a=4,b=-1时.满足a>b,则a2>b2,不能作为反例,错误;C、a=1,b=0时.满足a>b,则a2>b2,不能作为反例,错误;D、a=1,b=-2时,a>b,但a2<b2,能作为反例,正确;故选:D.【点睛】本题考查了命题与定理;熟记:要判断一个命题是假命题,举出一个反例就可以.7、D【详解】选项A、B中的图形是轴对称图形,只有1条对称轴;选项C中的图形不是轴对称图形;选项D中的图形是轴对称图形,有2条对称轴.故选D.8、B【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选B.【点睛】考查了轴对称图形,关键是正确找出对称轴的位置.9、B【解析】由角平分线以及平行线的性质可以得到等角,从而可以判定和是等腰三角形,所以,,的周长被转化为的两边AB和AC的和,即求得的周长为1.【详解】解:平分,

同理,.

和是等腰三角形;

的周长;

故选项A,C,D正确,

故选:B.

【点睛】考查了等腰三角形的性质与判定以及角平分线的定义此题难度适中,注意掌握数形结合思想与转化思想的应用.10、C【分析】根据多边形的内角和定理:(n−2)×180°求解即可.【详解】解:由题意可得:180°•(n﹣2)=150°•n,解得n=1.故多边形是1边形.故选C.【点睛】主要考查了多边形的内角和定理.n边形的内角和为:(n−2)×180°.此类题型直接根据内角和公式计算可得.二、填空题(每小题3分,共24分)11、1【分析】点到x轴的距离是该点纵坐标的绝对值,根据点坐标即可得到答案.【详解】解:M(3,﹣1)到x轴距离是1.故答案为:1.【点睛】此题考查点到坐标轴的距离,正确理解距离与点坐标的关系是解题的关键.12、AF=CB或EF=EB或AE=CE【分析】根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,

∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE=90°,∴∠BAD=∠BCE,

所以根据AAS添加AF=CB或EF=EB;

根据ASA添加AE=CE.

可证△AEF≌△CEB.

故答案为:AF=CB或EF=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.13、.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:∵点(2+a,3)关于y轴对称的点的坐标是(-4,2-b),

∴2+a=4,2-b=3,

解得a=2,b=-1,所以,ab=2-1=,故答案为【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.14、B点【解析】以每个点为原点,确定其余三个点的坐标,找出满足条件的点,得到答案.【详解】解:当以点B为原点时,如图,

A(-1,-1),C(1,-1),

则点A和点C关于y轴对称,符合条件.

故答案为:B点.【点睛】本题考查关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.15、7-4.【分析】依据完全平方公式进行计算.【详解】【点睛】此题考查完全平方公式以及二次根式的混合运算,熟记公式即可正确解答.16、(-2,-1)、(2,1)【解析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变点(-2,1)关于x轴对称的点的坐标是(-2,-1),点(-2,1)关于y轴对称的点的坐标是(2,1),17、<【分析】方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,判断即可.【详解】解:由图可得,甲10次跳远成绩离散程度小,而乙10次跳远成绩离散程度大,∴<,故答案为:<.【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18、16【解析】由线段垂直平分线上的点到线段两端点的距离相等可求出AE=BE,进而求出△BCE的周长.【详解】∵DE是AB的垂直平分线,∴AE=BE,∵AC=10cm,BC=6cm,∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=10+6=16cm.故答案为:16【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△BCE的周长等于AC与BC的和是解题的关键.三、解答题(共66分)19、(1)见解析;(2)70°.【分析】(1)由C是线段AB的中点,得到AC=BC,根据角平分线的定义得到∠ACD=∠BCE.则可证三角形全等;

(2)根据平角的定义得到∠ACD=∠DCE=∠BCE=60°,根据全等三角形的性质得到∠E=∠D=50°,根据三角形的内角和即可得到结论.【详解】(1)证明:∵C是线段AB的中点∴AC=BC∵CD平分∠ACE,CE平分∠BCD,∴∠ACD=∠ECD,∠BCE=∠ECD,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).(2)解:∵△ACD≌△BCE,∴∠D=∠E=50°,∵∠ACD+∠DCE+∠BCE=180°,∠ACD=∠DCE=∠BCE,∴∠ACD=∠DCE=∠BCE=60°,∴∠B=180°-∠BCE-∠E=70°.【点睛】本题考查全等三角形的判定和性质、三角形内角和定理等知识,解题的关键是正确寻找全等三角形全等的条件.20、,.【分析】利用除法法则变形,约分后计算得到最简结果,把x的值代入计算即可求出值.【详解】,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21、(1)10,89;(2)乙,见解析【分析】(1)根据平均数和方差(2)根据加权平均数的概念计算.【详解】解:(1)乙平均数=(2)甲的分数=乙的分数=故乙的成绩更好.【点睛】此题考查了平均数和加权平均数,用到的知识点是平均数和加权平均数,掌握它们的计算公式是本题的关键.22、(1)详见解析;(2)1人;(3)从优秀率看8(2)班更好,从稳定性看8(2)班的成绩更稳定;【分析】(1)由8(2)班A级人数及其所占百分比可得两个班的人数,班级人数减去A、B级人数可求出C等级人数;

(2)班级人数乘以C等级对应的百分比可得其人数;

(3)根据平均数和方差的定义求解可得;【详解】(1)∵8(2)班有2人达到A级,且A等级人数占被调查的人数为20%,

∴8(2)班参赛的人数为2÷20%=10(人),

∵8(1)和8(2)班参赛人数相同,

∴8(1)班参赛人数也是10人,

则8(1)班C等级人数为10-3-5=2(人),

补全图形如下:

(2)此次竞赛中8(2)班成绩为C级的人数为10×(1-20%-70%)=1(人),

故答案为:1.

(3)m=×(100×3+90×5+80×2)=91(分),

n=×[(100-91)2×3+(90-91)2×5+(80-91)2×2]=49,

∵8(1)班的优秀率为×100%=80%,8(2)班的优秀率为20%+70%=90%,

∴从优秀率看8(2)班更好;

∵8(1)班的方差大于8(2)班的方差,

∴从稳定性看8(2)班的成绩更稳定;

【点睛】此题考查条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了对平均数、方差的认识.23、解:(1)1;1.(2)s2甲=;s2乙=.(3)推荐甲参加比赛更合适.【详解】解:(1)1;1.(2)s2甲===;s2乙===.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.24、(1)D(1,0);(2)y=x−6;(3)(,0).【解析】(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,代入A、B坐标求出k,b的值即可;(3)作点B关于x轴的对称点B’,连接B’C交x轴于M,则点M即为所求,联立解析式可求出点C坐标,然后求出直线B’C的解析式,令y=0求出x的值即可.【详解】解:(1)由y=−3x+3,令y=0,得−3x+3=0,解得:x=1,∴D(1,0);(2)设直线l2的表达式为y=kx+b,由图象知:A(4,0),B(3,),代入表达式y=kx+b,得,解得:∴直线l2的解析表达式为y=x−6;(3)作点B关于x轴的对称点B’,则B’的坐标的为(3,),连接B’C交x轴于M,则点M即为所求,联立,解得:,∴C(2,-3),设直线B’C的解析式为:y=mx+n,代入B’(3,),C(2,-3),得,解得:,∴直线B’C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论