兰州市重点中学2025届数学八年级第一学期期末学业水平测试模拟试题含解析_第1页
兰州市重点中学2025届数学八年级第一学期期末学业水平测试模拟试题含解析_第2页
兰州市重点中学2025届数学八年级第一学期期末学业水平测试模拟试题含解析_第3页
兰州市重点中学2025届数学八年级第一学期期末学业水平测试模拟试题含解析_第4页
兰州市重点中学2025届数学八年级第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

兰州市重点中学2025届数学八年级第一学期期末学业水平测试模拟试题模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,点是的角平分线上一点,于点,点是线段上一点.已知,,点为上一点.若满足,则的长度为()A.3 B.5 C.5和7 D.3或72.若x,y的值均扩大为原来的2倍,下列分式的值保持不变的是()A. B. C. D.3.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.104.如图,在△ABC中,边AC的垂直平分线交边AB于点D,连结CD.若∠A=50°,则∠BDC的大小为()A.90° B.100° C.120° D.130°5.下列各式从左到右的变形正确的是()A.= B.=C.=- D.=6.估计的值在()A.和之间 B.和之间 C.和之间 D.和之间7.若分式的值为0,则的值是()A. B. C. D.8.如图,,平分,如果射线上的点满足是等腰三角形,那么的度数不可能为()A.120° B.75° C.60° D.30°9.下列各式中,正确的个数有(

)①+2=2②③④A.1个 B.2个 C.3个 D.0个10.等腰三角形的周长为12,则腰长a的取值范围是()A.3<a<6 B.a>3 C.4<a<7 D.a<611.在△ABC中,∠BAC=115°,DE、FG分别为AB、AC的垂直平分线,则∠EAG的度数为()A.50° B.40° C.30° D.25°12.石墨烯目前是世界上最稀薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅米,将这个数用科学计算法表示为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,△ABC≌△ADE,∠B=80°,∠C=30°,则∠E的度数为________.14.的立方根是___________.15.当代数式的值不大于时,的取值范围是_______________________.16.比较大小:-1______(填“>”、“=”或“<”).17.△ABC中,∠C=90°,∠A=54°,则∠B=____°.18.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点的坐标为,另一个顶点的坐标为,则点的坐标为_______.三、解答题(共78分)19.(8分)化简求值(1)求的值,其中,;(2)求的值,其中.20.(8分)已知关于x的一元二次方程x2﹣(k+3)x+3k=1.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.21.(8分)第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲校20名学生成绩的频数分布表和频数分布直方图如下:甲校学生样本成绩频数分布表甲校学生样本成绩频数分布直方图b.甲校成绩在的这一组的具体成绩是:87,88,88,88,89,89,89,89;c.甲、乙两校成绩的平均分、中位数、众数、方差如下:学校平均分中位数众数方差甲84n89129.7乙84.28585138.6表2根据以上图表提供的信息,解答下列问题:(1)表1中a=;b=;c=;表2中的中位数n=;(2)补全图甲校学生样本成绩频数分布直方图;(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(4)假设甲校200名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为.22.(10分)△ABC在平面直角坐标系中的位置如图所示,其中A(0,4),B(-2,2),C((-1,1),先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称.(1)画出△A1B1C1和△A2B2C2,并写出A2,B2,C2的坐标;(2)在x轴上确定一点P,使BP+A1P的值最小,请在图中画出点P;(3)点Q在y轴上且满足△ACQ为等腰三角形,则这样的Q点有个.23.(10分)已知:如图①所示的三角形纸片内部有一点P.任务:借助折纸在纸片上画出过点P与BC边平行的线段FG.阅读操作步骤并填空:小谢按图①~图④所示步骤进行折纸操作完成了画图任务.在小谢的折叠操作过程中,(1)第一步得到图②,方法是:过点P折叠纸片,使得点B落在BC边上,落点记为,折痕分别交原AB,BC边于点E,D,此时∠即∠=__________°;(2)第二步得到图③,参考第一步中横线上的叙述,第二步的操作指令可叙述为:_____________,并求∠EPF的度数;(3)第三步展平纸片并画出两次折痕所在的线段ED,FG得到图④.完成操作中的说理:请结合以上信息证明FG∥BC.24.(10分)阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.25.(12分)阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.例如:因为,,所与,与互为有理化因式.(1)的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:,用上述方法对进行分母有理化.(3)利用所需知识判断:若,,则的关系是.(4)直接写结果:.26.如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.(1)CD与BE相等?若相等,请证明;若不相等,请说明理由;(1)若∠BAC=90°,求证:BF1+CD1=FD1.

参考答案一、选择题(每题4分,共48分)1、D【分析】过点P作PE⊥AO于E,根据角平分线的性质和定义可得PE=PN,∠POE=∠PON,∠PEO=∠PNO=90°,再根据角平分线的性质可得OE=ON=5,然后根据点D与点E的先对位置分类讨论,分别画出对应的图形,利用HL证出Rt△PDE≌Rt△PMN,可得DE=MN,即可求出OD.【详解】解:过点P作PE⊥AO于E∵OC平分∠AOB,,∴PE=PN,∠POE=∠PON,∠PEO=∠PNO=90°∴∠OPE=90°-∠POE=90°-∠PON=∠OPN∴PO平分∠EPN∴OE=ON=5①若点D在点E左下方时,连接PD,如下图所示在Rt△PDE和Rt△PMN中∴Rt△PDE≌Rt△PMN∴DE=MN∵MN=ON-OM=2∴DE=2∴OD=OE-DE=3②若点D在点E右上方时,连接PD,如下图所示在Rt△PDE和Rt△PMN中∴Rt△PDE≌Rt△PMN∴DE=MN∵MN=ON-OM=2∴DE=2∴OD=OE+DE=1综上所述:OD=3或1.故选D.【点睛】此题考查的是角平分线的性质和全等三角形的判定及性质,掌握角平分线的性质、构造全等三角形的方法、全等三角形的判定及性质和分类讨论的数学思想是解决此题的关键.2、B【分析】根据分式的基本性质逐项分析即可.【详解】解:A、变化为,分式的值改变,故此选项不符合题意;B、=,分式的值保持不变,故此选项符合题意;C、=,分式的值改变,故此选项不符合题意;D、=,分式的值改变,故此选项不符合题意.故选:B.【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.3、B【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.4、B【解析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【详解】∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50,∴∠BDC=∠DCA+∠A=100,故答案选:B.【点睛】本题考查的知识点是线段垂直平分线的性质,解题的关键是熟练的掌握线段垂直平分线的性质.5、D【解析】解:A.根据分式的基本性质应该分子和分母都除以b,故本选项错误;B.根据分式的基本性质,分子和分母都加上2不相等,故本选项错误;C.,故本选项错误;D.∵a−2≠0,∴,故本选项正确;故选D.6、D【分析】利用算术平方根进行估算求解.【详解】解:∵∴故选:D.【点睛】本题考查无理数的估算,掌握算术平方根的概念正确进行计算从而进行估算是本题的解题关键.7、B【分析】分式的值是1,则分母不为1,分子是1.【详解】解:根据题意,得且,

解得:.

故选:B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.8、C【分析】分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC是度数即可得到答案.【详解】∵,平分,∠AOC=30,当OC=CE时,∠OEC=∠AOC=30,当OE=CE时,∠OEC=180120,当OC=OE时,∠OEC=(180)=75,∴∠OEC的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.9、B【分析】利用二次根式加减运算法则分别判断得出即可.【详解】解:①原式=,错误;②原式=a,错误;③原式=,正确;④原式=5,正确.故答案为:B.【点睛】此题考查了二次根式的加减运算,正确合并二次根式是解题关键.10、A【分析】根据等腰三角形的腰长为a,则其底边长为:12﹣2a,根据三角形三边关系列不等式,求解即可.【详解】解:由等腰三角形的腰长为a,则其底边长为:12﹣2a.∵12﹣2a﹣a<a<12﹣2a+a,∴3<a<1.故选:A.【点睛】本题考查了三角形三边的关系,对任意一个三角形,任意两边之和大于第三边,任意两边之差小于第三边,灵活利用三角形三边的关系确定三角形边长的取值范围是解题的关键.11、A【分析】根据三角形内角和定理求出∠B+∠C,根据线段的垂直平分线的性质得到EA=EB,GA=GC,根据等腰三角形的性质计算即可.【详解】∵∠BAC=115°,∴∠B+∠C=65°,∵DE、FG分别为AB、AC的垂直平分线,∴EA=EB,GA=GC,∴∠EAB=∠B,∠GAC=∠C,∴∠EAG=∠BAC-(∠EAB+∠GAC)=∠BAC-(∠B+∠C)=50°,故选A.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12、C【分析】根据科学记数法的表示形式对数值进行表示即可.【详解】解:=,故选:C.【点睛】本题考查了科学记数法,掌握科学记数法的表示形式是解题关键.二、填空题(每题4分,共24分)13、30°【分析】根据△ABC≌△ADE得到∠E=∠C即可.【详解】解:∵△ABC≌△ADE,∴∠C=∠E,∵∠C=30°,∴∠E=30°.故答案为:30°.【点睛】本题考查了全等三角形的性质,全等三角形的对应角相等,对应边相等,难度不大.14、1【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是1,故答案为:1.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.15、【分析】根据题意,列出一元一次不等式,然后解不等式即可得出结论.【详解】解:由题意可得≤10≤20≤19解得故答案为:.【点睛】此题考查的是解一元一次不等式,掌握不等式的解法是解决此题的关键.16、<【解析】首先求出-1的值是多少;然后根据实数大小比较的方法判断即可.【详解】解:-1=2-1=1,∵1<,∴-1<.故答案为:<.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.17、36°【分析】根据直角三角形的两锐角互余解答即可.【详解】∵△ABC中,∠C=90°,∴∠A+∠B=90º,∵∠A=54º,∴∠B=90º-∠A=90º-54º=36º,故答案为:36º.【点睛】本题考查了直角三角形的性质,属于三角形的基础题,掌握直角三角形的两锐角互余是解答的关键.18、【分析】如图:分别过B和A作y轴的垂线,垂足分别为D、E;根据余角的性质,可得∠DBC=∠ECA,然后运用AAS判定△BCD≌△CAE,可得CE=BD=6,AE=CD=OD-OC=4即可解答.【详解】解:分别过B和A作y轴的垂线,垂足分别为D、E∴∠BDC=∠AEC=90°∵AC=BC,∠BCA=90°,∠BCD+∠ECA=90°又∵∠CBD+∠BCD=90°∴∠CBD=∠ECA在△BCD和△CAE中∠BDC=∠AEC=90°,∠CBD=∠ECA,AC=BC∴△BCD≌△CAE(AAS)∴CE=BD=6,AE=CD=OD-OC=4∴OE=CE-0C=6-2=4∴B点坐标为(4,-4).故答案为(4,-4).【点睛】本题考查了全等三角形的判定与性质,根据题意构造出全等三角形是解答本题的关键.三、解答题(共78分)19、(1),15;(2),.【分析】(1)原式利用平方差公式计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值;

(2)原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.【详解】(1)原式.当,时,原式.(2)原式.当时,原式.【点睛】本题考查分式的化简求值,以及整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.20、(1)证明见解析;(2)8或2.【解析】(1)求出根的判别式,利用偶乘方的非负数证明;(2)分△ABC的底边长为2、△ABC的一腰长为2两种情况解答.证明:(1)∵△=(k+3)2-12k=(k-3)2≥1,

∴不论k取何实数,方程总有实根;(2)当△ABC的底边长为2时,方程有两个相等的实数根,则(k-3)2=1,解得k=3,方程x2-6x+9=1,解得x1=x2=3,故三角形ABC的周长为:2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,方程为x2-5x+6=1,解得x1=2,x2=3,故△ABC的周长为:2+2+3=2.故答案为2或8.“点睛”本题考查的是一元二次方程根的判别式、等腰三角形的性质,一元二次方程总有实数根应根据判别式来做,两根互为相反数应根据根与系数的关系做,等腰三角形的周长应注意两种情况,以及两种情况的取舍.21、(1)a=1;b=2;c=0.10;n=88.5;(2)作图见解析;(3)乙,乙的中位数是85,87>85;(4)1.【分析】(1)根据“频数=总数×频率”求出a,根据“频数之和等于总体”求出b,根据“频数÷总数=频率”求出c,根据中位数的定义,确定第10,11个数值即可求出n;(2)根据b=2,即可补全甲校成绩频数分布直方图;(3)根据中位数的意义即可确定答案;(4)用样本估计总体求出甲校优秀生频率,根据“频数=总数×频率”即可求解.【详解】解:(1)a=20×0.05=1,b=20-1-3-8-6=2,c=2÷20=0.10;由甲校频数分布表得共20人,∴中位数为第10,11个数的中位数,第10,11个数均位于组,∴第10,11个数分别为88,89,∴;故答案为:a=1;b=2;c=0.10;n=88.5;(2)补全图甲校学生样本成绩频数分布直方图如图;(3)由甲校成绩为88.5分,估计约有一半学生成绩在88.5分以上,由乙校成绩为85分估计约有一半学生成绩在85分以上,而某学生的成绩是87分,在他所属学校排在前10名,可得该生是乙校学生,故答案为:乙,乙的中位数是85,87>85;(4)200×(0.30+0.40)=1,答:甲校成绩优秀的学生约有1人.【点睛】本题考查统计表,频数分布直方图、中位数、用样本估计总体,解答本题的关键是明确频数,频率,总数关系,熟知中位数的意义..22、(1)作图见解析,A2,B2,C2的坐标分别为A2(3,-3),B2(1,-1),C2(2,0);(2)见解析;(3)1.【分析】(1)△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称,根据平移的性质和轴对称的性质先找出对应顶点的坐标,顺次连接即可;

(2)依据轴对称的性质,连接BA2,交x轴于点P,此时BP+A1P的值最小;

(3)在平面直角坐标系中,作线段AC的垂直平分线,与y轴有1个交点,分别以A,C为圆心,AC长为半径画弧,与y轴的交点有3个,即可得到Q点的数量.【详解】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求,根据图形可得,A2,B2,C2的坐标分别为A2(3,-3),B2(1,-1),C2(2,0);

(2)如图所示,连接BA2,交x轴于点P,则点P即为所求;

(3)根据点Q在y轴上且满足△ACQ为等腰三角形,在平面直角坐标系中,作线段AC的垂直平分线,与y轴有1个交点,分别以A,C为圆心,AC长为半径画弧,与y轴的交点有3个,可得这样的Q点有1个.

故答案为:1.【点睛】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,多数情况要作点关于某直线的对称点.23、(1)90;(2)过点P折叠纸片,使得点D落在PE上,落点记为,折痕交原AC边于点F;(3)见解析【分析】(1)根据折叠得到,利用邻补角的性质即可得结论;(2)根据(1)的操作指令即可写出第二步;(3)根据(1)(2)的操作过程即可证明结论.【详解】解:(1)因为:所以:故答案为.(2)过点P折叠纸片,使得点D落在PE上,落点记为,折痕交原AC边于点F.由折叠过程可知∠=∠EPF=∠DPF,∵三点共线,∴∠+∠DPF=180°,∴∠=90°,∴∠EPF=90°.(3)完成操作中的说理:∵∠EDC=90°,∠EPF=90°,∴∠EDC=∠EPF,∴FG∥BC.【点睛】本题考查了作图-复杂作图、平行线的判定和性质、邻补角的性质,解决本题的关键是理解操作过程.24、(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.【解析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【详解】(1)由题目中的解答步骤可得,错误步骤的代号为:C,故答案为C;(2)错误的原因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论