版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省靖江市第三中学数学八年级第一学期期末考试模拟试题拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在中,,,于点,的平分线分别交、于、两点,为的中点,的延长线交于点,连接,下列结论:①为等腰三角形;②;③;④.其中正确的结论有()A.个 B.个 C.个 D.个2.如图,等腰三角形ABC底边BC的长为4cm,面积为12cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为()A.5cm B.6cm C.8cm D.10cm3.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,5 B.2,2,4 C.1,2,3 D.2,3,44.如图,直线m是ΔABC中BC边的垂直平分线,点P是直线m上的动点.若AB=6,AC=4,BC=1.则△APC周长的最小值是A.10 B.11 C.11.5 D.135.如图,下列各式中正确的是()A. B.C. D.6.设(2a+3b)2=(2a﹣3b)2+A,则A=()A.6ab B.12ab C.0 D.24ab7.已知关于的不等式组有且只有一个整数解,则的取值范围是()A. B. C. D.8.若一个多边形的每个外角都等于36°,则这个多边形的边数是().A.10 B.9 C.8 D.79.下列约分正确的是()A. B. C. D.10.在实数0,,-2,中,其中最小的实数是()A. B. C. D.11.在同一坐标系中,函数与的图象大致是()A. B.C. D.12.若把分式中的x与y都扩大3倍,则所得分式的值()A.缩小为原来的 B.缩小为原来的C.扩大为原来的3倍 D.不变二、填空题(每题4分,共24分)13.如图,点E在边DB上,点A在内部,∠DAE=∠BAC=90°,AD=AE,AB=AC,给出下列结论,其中正确的是_____(填序号)①BD=CE;②∠DCB=∠ABD=45°;③BD⊥CE;④BE2=2(AD2+AB2).14.已知,那么以边边长的直角三角形的面积为__________.15.如图,已知,AB=BC,点D是射线AE上的一动点,当BD+CD最短时,的度数是_________.16.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=_____°.17.已知和都是方程的解,则_______.18.当____________时,解分式方程会出现增根.三、解答题(共78分)19.(8分)如图,由6个长为2,宽为1的小矩形组成的大矩形网格,小矩形的顶点称为这个矩形网格的格点,由格点构成的几何图形称为格点图形(如:连接2个格点,得到一条格点线段;连接3个格点,得到一个格点三角形;…),请按要求作图(标出所画图形的顶点字母).(1)画出4种不同于示例的平行格点线段;(2)画出4种不同的成轴对称的格点三角形,并标出其对称轴所在线段;(3)画出1个格点正方形,并简要证明.20.(8分)(1)分解因式:(2)解分式方程:21.(8分)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下:•﹣=(1)聪明的你请求出盖住部分化简后的结果(2)当x=2时,y等于何值时,原分式的值为522.(10分)如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)求证:∠ABE=∠ACD;(2)求证:过点A、F的直线垂直平分线段BC.23.(10分)如图,函数的图像分别与x轴、y轴交于A、B两点,点C在y轴上,AC平分.(1)求点A、B的坐标;(2)求的面积;(3)点P在坐标平面内,且以A、B、P为顶点的三角形是等腰直角三角形,请你直接写出点P的坐标.24.(10分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,5),B(﹣3,2),C(﹣1,1),直线L过点(1,0)且与y轴平行.(1)作出△ABC关于直线L的对称图形△A′B′C′;(2)分别写出点A′,B′,C′的坐标.25.(12分)计算:(1)2ab2c(2)先化简,再求值:(2x-1﹣1)•x226.如图,在平面直角坐标中,已知A(﹣1,5),B(﹣3,0),C(﹣4,3)(1)在图中作出△ABC关于y轴对称的图形△A′B′C′;(2)如果线段AB的中点是P(﹣2,m),线段A'B'的中点是(n﹣1,2.5).求m+n的值.(3)求△A'B'C的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】①由等腰直角三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质可得到∠AEF=∠AFE,可判断△AEF为等腰三角形,于是可对①进行判断;求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断②③;连接EN,只要证明△ABE≌△NBE,即可推出∠ENB=∠EAB=90°,由此可知判断④.【详解】解:∵等腰Rt△ABC中,∠BAC=90°,AD⊥BC,∴∠BAD=∠CAD=∠C=45°,BD=AD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,∴∠AEF=∠AFE,∴AF=AE,即△AEF为等腰三角形,所以①正确;∵为的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°−67.5°=22.5°=∠MBN,在△FBD和△NAD中,∴△FBD≌△NAD(ASA),∴DF=DN,AN=BF,所以②③正确;∵AM⊥EF,∴∠BMA=∠BMN=90°,∵BM=BM,∠MBA=∠MBN,∴△MBA≌△MBN,∴AM=MN,∴BE垂直平分线段AN,∴AB=BN,EA=EN,∵BE=BE,∴△ABE≌△NBE,∴∠ENB=∠EAB=90°,∴EN⊥NC,故④正确,故选:D.【点睛】本题考查了全等三角形的判定与性质、三角形外角性质、三角形内角和定理、垂直平分线的性质,能正确证明推出两个三角形全等是解此题的关键,主要考查学生的推理能力.2、C【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故选C.【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.3、D【分析】根据三角形的两边之和大于第三边,两边之差小于第三边,逐项分析解答即可.【详解】A、1+2<5,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3>4,能组成三角形,故此选项正确;故选D.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.4、A【分析】根据垂直平分线的性质BP=PC,所以△APC周长=AC+AP+PC=AC+AP+BP≥AC+AB=10.【详解】如图,连接BP∵直线m是ΔABC中BC边的垂直平分线,∴BP=PC,∴△APC周长=AC+AP+PC=AC+AP+BP,∵两点之间线段最短∴AP+BP≥AB,∴△APC周长最小为AC+AB=10.【点睛】本题主要考查线段垂直平分线的性质定理,以及两点之间线段最短.做本题的关键是能得出AP+BP≥AB,做此类题的关键在于能根据题设中的已知条件,联系相关定理得出结论,再根据结论进行推论.5、D【解析】试题分析:延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故选D.考点:平行线的性质.6、D【解析】∵(2a+3b)2=4a2+12ab+9b2,(2a-3b)2+A=4a2-12ab+9b2+A,(2a+3b)2=(2a-3b)2+A∴4a2+12ab+9b2=4a2-12ab+9b2+A,∴A=24ab;故选D.7、D【分析】首先解每个不等式,然后根据不等式组的整数解的个数,确定整数解,从而确定a的范围.【详解】解:解①得且,解②得.若不等式组只有个整数解,则整数解是.所以,故选:D.【点睛】此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8、A【分析】根据正多边形的边数等于360°除以每一个外角的度数列式计算即可得解.【详解】解:∵一个多边形的每个外角都等于36°,∴这个多边形是正多边形,∴360°÷36°=1.∴这个多边形的边数是1.故选:A.【点睛】本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.9、D【分析】根据题意找出分子与分母的最大公因式,利用分式的基本性质化简即可得出结果.【详解】解:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选:D.【点睛】本题考查分式的约分,先找出分子与分母的最大公因式,并熟练利用分式的基本性质化简是解题的关键.10、A【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小,把这四个数从小到大排列,即可得出答案.【详解】∵实数0,,-2,中,,∴其中最小的实数为-2;
故选:A.【点睛】此题考查了实数的大小比较,用到的知识点是正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.11、B【分析】根据解析式知:第二个函数比例系数为正数,故图象必过一、三象限,而必过一、三或二、四象限,可排除C、D选项,再利用k进行分析判断.【详解】A选项:,.解集没有公共部分,所以不可能,故A错误;B选项:,.解集有公共部分,所以有可能,故B正确;C选项:一次函数的图象不对,所以不可能,故C错误;D选项:正比例函数的图象不对,所以不可能,故D错误.故选:B.【点睛】本题考查正比例函数、一次函数的图象性质,比较基础.12、A【分析】根据分式的基本性质即可求出答案.【详解】解:原式==,故选:A.【点睛】本题考查分式的基本性质,关键在于熟记基本性质.二、填空题(每题4分,共24分)13、①③【分析】①由已知条件证明DAB≌EAC即可;②由①可得ABD=ACE<45°,DCB>45°;③由ECB+EBC=ABD+ECB+ABC=ACE+ECB+ABC=45°+45°=90°可判断③;④由BE1=BC1-EC1=1AB1-(CD1﹣DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1可判断④.【详解】解:∵DAE=BAC=90°,∴DAB=EAC,∵AD=AE,AB=AC,∴AED=ADE=ABC=ACB=45°,∵在DAB和EAC中,,∴DAB≌EAC,∴BD=CE,ABD=ECA,故①正确;由①可得ABD=ACE<45°,DCB>45°故②错误;∵ECB+EBC=ABD+ECB+ABC=ACE+ECB+ABC=45°+45°=90°,∴CEB=90°,即CE⊥BD,故③正确;∴BE1=BC1-EC1=1AB1-(CD1﹣DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.∴BE1=1(AD1+AB1)-CD1,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.14、6或【分析】根据得出的值,再分情况求出以边边长的直角三角形的面积.【详解】∵∴(1)均为直角边(2)为直角边,为斜边根据勾股定理得另一直角边∴故答案为:6或【点睛】本题考查了三角形的面积问题,掌握勾股定理以及三角形的面积公式是解题的关键.15、【分析】作CO⊥AE于点O,并延长CO,使,通过含30°直角三角形的性质可知是等边三角形,又因为AB=BC,根据等腰三角形三线合一即可得出,则答案可求.【详解】作CO⊥AE于点O,并延长CO,使,则AE是的垂直平分线,此时BD+CD最短∴是等边三角形∵AB=BC故答案为:90°.【点睛】本题主要考查含30°直角三角形的性质及等腰三角形三线合一,掌握含30°直角三角形的性质及等腰三角形三线合一是解题的关键.16、45【解析】解:∵当PC+PD最小时,作出D点关于MN的对称点,正好是A点,连接AC,AC为正方形对角线,根据正方形的性质得出∠PCD=45°.17、-1【分析】根据方程的解满足方程,把解代入方程,可得二元一次方程组,解方程组,可得答案.【详解】把、分别代入得:,解得,∴.故答案为:-1.【点睛】本题考查方程的解及二元一次方程组,熟练掌握解的概念及二元一次方程组解法是解题关键.18、1【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=1,故答案为1.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题(共78分)19、(1)见解析;(2)见解析;(1)见解析【分析】(1)根据平行线的判定即可画出图形(答案不唯一);(2)根据轴对称的性质即可画出图形(答案不唯一);
(1)根据正方形的判定方法即可画出图形(答案不唯一),再根据矩形的性质以及三角形全等的判定与性质进行证明.【详解】解:(1)答案不唯一,如图AB∥CD:(2)答案不唯一,如图△ABC为所求三角形,虚线为对称轴:(1)答案不唯一,如图四边形ABCD为正方形:证明:∵图中所有长方形都全等,∴AF=BE,∠F=∠BEC=90°,BF=CE,∴△AFB≌△BEC(SAS),∴AB=BC,∠1=∠1.同理,易得AB=AD=DC,∴四边形ABCD为菱形.∵∠1=∠1,∴∠1+∠2=90°,∴∠ABC=90°,∴四边形ABCD为正方形.【点睛】本题考查作图-应用与设计,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、(1)(2)x=3【分析】(1)先提取公因式,再利用完全平方公式即可分解;(2)根据分式方程的解法去分母化为整式方程,再进行求解.【详解】(1)==(2)x=3经检验,x=3是原方程的解.【点睛】此题主要考查因式分解及分式方程的求解,解题的关键是熟知分式方程的解法.21、(1)﹣;(2)y=【分析】(1)根据被减数、减数、差及因数与积的关系列式,然后化简分式求出盖住的部分即可;(2)根据x=2时分式的值是1,得出关于y的方程,求解即可.【详解】解:(1)∵,∴盖住部分化简后的结果为;(2)∵x=2时,原分式的值为1,即,∴10﹣1y=2,解得:y=,经检验,y=是原方程的解,所以当x=2,y=时,原分式的值为1.【点睛】本题考查了分式的混合运算及解分式方程,熟练掌握运算法则是解题的关键.22、(1)证明详见解析(2)证明详见解析【分析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【详解】(1)在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)连接AF.∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.【点睛】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.23、(1)A(6,0),B(0,8);(2)15;(3)使△PAB为等腰直角三角形的P点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【分析】(1)在函数解析式中分别令y=0和x=0,解相应方程,可求得A、B的坐标;
(2)过C作CD⊥AB于点D,由勾股定理可求得AB,由角平分线的性质可得CO=CD,再根据S△AOB=S△AOC+S△ABC,可求得CO,则可求得△ABC的面积;
(3)可设P(x,y),则可分别表示出AP2、BP2,分∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,分别可得到关于x、y的方程组,可求得P点坐标.【详解】解:(1)在中,令y=0可得0=-x+8,解得x=6,令x=0,解得y=8,
∴A(6,0),B(0,8);
(2)如图,过点C作CD⊥AB于点D,
∵AC平分∠OAB,
∴CD=OC,
由(1)可知OA=6,OB=8,
∴AB=10,
∵S△AOB=S△AOC+S△ABC,
∴×6×8=×6×OC+×10×OC,解得OC=3,
∴S△ABC=×10×3=15;
(3)设P(x,y),则AP2=(x-6)2+y2,BP2=x2+(y-8)2,且AB2=100,
∵△PAB为等腰直角三角形,
∴有∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,
①当∠PAB=90°时,则有PA2=AB2且PA2+AB2=BP2,即,解得或,此时P点坐标为(14,6)或(-2,-6);
②∠PBA=90°时,有PB2=AB2且PB2+AB2=PA2,
即,解得或,此时P点坐标为(8,14)或(-8,2);③∠APB=90°时,则有PA2=PB2且PA2+PB2=AB2,
即解得或此时P点坐标为(-1,1)或(7,7);
综上可知使△PAB为等腰直角三角形的P点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【点睛】本题为一次函数的综合应用,涉及函数图象与坐标轴的交点、勾股定理、三角形的面积、角平分线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中考物理复习主题单元8第19课时合理利用机械能小粒子与大宇宙课件
- 主播 课件教学课件
- 小学数学新人教版一年级下册20以内口算练习题大全
- 《两只小象》教学设计教学设计 教案
- 智能家居电气设施安装合同
- 幼儿园智能照明系统招投标攻略
- 展会设备租赁合同
- 幼儿园园长聘用合同范本
- 建筑公司员工意见箱管理准则
- 石油提炼班组安全作业规范
- 中医诊所一人一方代煎制粉丸委托书
- 2024年云南省中考英语试卷附答案
- 成人有创机械通气气道内吸引技术操作解读
- 2024年保育员考试题库加解析答案
- 语文 职业模块语文综合实践教学课件(讲好劳模故事 学习劳模精神)
- 医院疏散逃生讲解
- 【短视频平台商品营销策略探究:以抖音为例8800字(论文)】
- 2024年保险考试-车险查勘定损员笔试参考题库含答案
- 国企市场化转型方案
- 2024年新高考语文复习题型四 类文本阅读(全国适用)解析版
- 中耳胆脂瘤查房
评论
0/150
提交评论