2025届苏州市振华中学数学八上期末达标测试试题含解析_第1页
2025届苏州市振华中学数学八上期末达标测试试题含解析_第2页
2025届苏州市振华中学数学八上期末达标测试试题含解析_第3页
2025届苏州市振华中学数学八上期末达标测试试题含解析_第4页
2025届苏州市振华中学数学八上期末达标测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届苏州市振华中学数学八上期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,△ABC中,AB=10,BC=12,AC=,则△ABC的面积是().A.36 B. C.60 D.2.-9的立方根为()A.3 B.-3 C.3或-3 D.3.某地区开展“二十四节气”标识系统设计活动,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A. B.C. D.4.下列大学校徽主体图案中,是轴对称图形的是()A. B. C. D.5.如图,是数轴上的四个点,这四个点中最适合表示的是()A.点 B.点 C.点 D.点6.如图,三个边长均为4的正方形重叠在一起,,是其中两个正方形的对角线交点,则阴影部分面积是()A.2 B.4 C.6 D.87.如图,已知数轴上点表示的数为,点表示的数为1,过点作直线垂直于,在上取点,使,以点为圆心,以为半径作弧,弧与数轴的交点所表示的数为()A. B. C. D.8.如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是(

)A.AB=DE B.∠A=D C.AC=DF D.AC∥DF9.在阳明山国家森林公园举行中国·阳明山“和”文化旅游节暨杜鹃花会期间,几名同学包租一辆车前去游览,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加游览的学生共有人,则可列方程为()A. B. C. D.10.如图,在中,,,,则的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.分解因式:__________.12.如图,已知CA=BD判定△ABD≌△DCA时,还需添加的条件是__________.13.分解因式:_______.14.如图,在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,垂足是D,若AB=8cm,则AD=__cm.15.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,若(a﹣1)2+|b﹣|+=0,则这个三角形一定是_____.16.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为______.17.当满足条件________时,分式没有意义.18.如图,将等腰绕底角顶点A逆时针旋转15°后得到,如果,那么两个三角形的重叠部分面积为____.三、解答题(共66分)19.(10分)“文明礼仪”在人们长期生活和交往中逐渐形成,并以风俗、习惯等方式固定下来的.我们作为具有五千年文明史的“礼仪之邦”,更应该用文明的行为举止,合理的礼仪来待人接物.为促进学生弘扬民族文化、展示民族精神,某学校开展“文明礼仪”演讲比赛,八年级(1)班,八年级(2)班各派出5名选手参加比赛,成绩如图所示.(1)根据图,完成表格:平均数(分)中位数(分)极差(分)方差八年级(1)班7525八年级(2)班7570160(2)结合两班选手成绩的平均分和方差,分析两个班级参加比赛选手的成绩;(3)如果在每班参加比赛的选手中分别选出3人参加决赛,从平均分看,你认为哪个班的实力更强一些?说明理由.20.(6分)如图,一次函数的图像与轴交于点,与轴交于点,且经过点.(1)当时;①求一次函数的表达式;②平分交轴于点,求点的坐标;(2)若△为等腰三角形,求的值;(3)若直线也经过点,且,求的取值范围.21.(6分)如图,在中,,,,M在AC上,且,过点A(与BC在AC同侧)作射线,若动点P从点A出发,沿射线AN匀速运动,运动速度为,设点P运动时间为t秒.(1)经过_________秒时,是等腰直角三角形?(2)经过_________秒时,?判断这时的BM与MP的位置关系,说明理由.(3)经过几秒时,?说明理由.(4)当是等腰三角形时,直接写出t的所有值.22.(8分)已知一个多边形的内角和,求这个多边形的边数.23.(8分)计算:(1)(2)(3)24.(8分)观察下列一组等式,然后解答后面的问题,,,(1)观察以上规律,请写出第个等式:为正整数).(2)利用上面的规律,计算:(3)请利用上面的规律,比较与的大小.25.(10分)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.26.(10分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数是多少;(3)本次调查学生参加户外活动时间的众数是多少,中位数是多少;(4)本次调查学生参加户外活动的平均时间是否符合要求?

参考答案一、选择题(每小题3分,共30分)1、A【分析】作于点D,设,得,,结合题意,经解方程计算得BD,再通过勾股定理计算得AD,即可完成求解.【详解】如图,作于点D设,则∴,∴∵AB=10,AC=∴∴∴∴△ABC的面积故选:A.【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.2、D【分析】根据立方根的定义进行计算即可得解.【详解】-9的立方根是.故选:D.【点睛】本题考查了立方根的定义,是基础题,熟记概念是解题的关键.3、D【分析】根据轴对称图形的概念求解即可.【详解】A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选D.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、C【解析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,逐一判断即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项是轴对称图形,故本选项符合题意;D选项不是轴对称图形,故本选项不符合题意.故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.5、A【分析】根据进行判断即可.【详解】∵∴∴点最适合表示故答案为:A.【点睛】本题考查了用数轴上的点表示无理数的问题,掌握要表示的数的大小范围是解题的关键.6、D【分析】根据题意作图,连接O1B,O1C,可得△O1BF≌△O1CG,那么可得阴影部分的面积与正方形面积的关系,同理得出另两个正方形的阴影部分面积与正方形面积的关系,从而得出答案.【详解】连接O1B,O1C,如图:∵∠BO1F+∠FO1C=90°,∠FO1C+∠CO1G=90°,∴∠BO1F=∠CO1G,∵四边形ABCD是正方形,∴∠O1BF=∠O1CG=45°,在△O1BF和△O1CG中,∴△O1BF≌△O1CG(ASA),∴O1、O2两个正方形阴影部分的面积是S正方形,同理另外两个正方形阴影部分的面积也是S正方形,∴S阴影=S正方形=1.故选D.【点睛】本题主要考查了正方形的性质及全等三角形的证明,把阴影部分进行合理转移是解决本题的难点,难度适中.7、B【分析】由数轴上点表示的数为,点表示的数为1,得PA=2,根据勾股定理得,进而即可得到答案.【详解】∵数轴上点表示的数为,点表示的数为1,∴PA=2,又∵l⊥PA,,∴,∵PB=PC=,∴数轴上点所表示的数为:.故选B.【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.8、C【分析】由已知条件得到相应边相等和对应角相等.再根据全等三角形的判定定理“AAS”,“SAS”,“ASA”依次判断.【详解】∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,∵AB//DE,∴∠B=∠DEF,其中BC是∠B的边,EF是∠DEF的边,根据“SAS”可以添加边“AB=DE”,故A可以,故A不符合题意;根据“AAS”可以添加角“∠A=∠D”,故A可以,故B不符合题意;根据“ASA”可以添加角“∠ACB=∠DFE”,故D可以,故D不符合题意;故答案为C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9、D【分析】设参加游览的同学共x人,则原有的几名同学每人分担的车费为:元,出发时每名同学分担的车费为:元,根据每个同学比原来少摊了1元钱车费即可得到等量关系.【详解】设参加游览的同学共x人,根据题意得:1.故选:D.【点睛】本题考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.10、B【分析】由题中条件可得,即,可由与、的差表示,进而求解即可.【详解】∵,∴,在和中∴(SAS),∴,,∵.∴,∴.故选B.【点睛】考查了全等三角形的判定及性质,解题关键是熟记其判定和性质,并灵活运用解题问题.二、填空题(每小题3分,共24分)11、【分析】先提取公因式3xy,再对余下的多项式利用平方差公式继续分解.【详解】3x3y﹣12xy=3xy(x2﹣4)=3xy(x+2)(x﹣2).故答案为:3xy(x+2)(x﹣2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12、AB=CD【分析】条件是AB=CD,理由是根据全等三角形的判定定理SSS即可推出△ABD≌△DCA.【详解】解:已知CA=BD,AD=AD∴要使△ABD≌△DCA则AB=CD即可利用SSS推出△ABD≌△DCA故答案为AB=CD.【点睛】本题主要考查对全等三角形的判定定理的理解和掌握,掌握三角形的判定定理是解题的关键.13、【分析】根据提公因式法即可解答.【详解】解:故答案为:.【点睛】本题考查了分解因式,解题的关键是掌握提公因式法,准确提出公因式.14、2【分析】根据含30°角的直角三角形的性质可求出AC的长,由锐角互余的关系可得∠ACD=∠B=30°,再根据含30°角的直角三角形的性质求出AD的长即可.【详解】∵∠ACB=90°,∠B=30°,AB=8cm,∴AC=AB=4,∵∠B+∠A=90°,∠A+∠ACD=90°,∴∠ACD=∠B=30°,∴AD=AC=2.故答案为2【点睛】本题考查含30°角的直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.15、直角三角形【分析】依据偶数次幂,绝对值,二次根式的非负性求得a、b、c的值,然后依据勾股定理的逆定理进行判断即可.【详解】∵(a﹣1)2+|b﹣|+=0,∴a=1,b=,c=2,∴a2+c2=b2,∴△ABC为直角三角形.故答案为:直角三角形.【点睛】本题主要考查偶数次幂,绝对值,二次根式的非负性以及勾股定理的逆定理,掌握偶数次幂,绝对值,二次根式的非负性是解题的关键.16、125°【详解】解:Rt△ABE中,∠ABE=20°,∴∠AEB=70°,由折叠的性质知:∠BEF=∠DEF,而∠BED=180°﹣∠AEB=110°,∴∠BEF=55°,易知∠EBC=∠D=∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′=180°﹣∠BEF=125°.故答案为125°.【点睛】本题考查翻折变换(折叠问题).17、【分析】根据分式无意义的条件可直接进行求解.【详解】解:由分式没有意义,可得:,解得:;故答案为.【点睛】本题主要考查分式无意义的条件,熟练掌握分式不成立的条件是解题的关键.18、【分析】设B′C′与AB相交于点D,根据等腰直角三角形的性质可得∠BAC=45°,根据旋转角可得∠CAC′=15°,然后求出∠C′AD=30°,根据30°角所对的直角边等于斜边的一半可得AD=2C′D,然后利用勾股定理列式求出C′D的长度,再根据三角形的面积公式列式进行计算即可得解.【详解】设B′C′与AB相交于点D,如图,在等腰直角△ABC中,∠BAC=45°,∵旋转角为15°,∴∠CAC′=15°,∴∠C′AD=∠BAC-∠CAC′=45°-15°=30°,∴AD=2C′D,在Rt△AC′D中,根据勾股定理,AC′2+C′D2=AD2,即12+C′D2=4C′D2,解得C′D=,∴重叠部分的面积=.故答案为:.【点睛】本题考查了旋转的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟练掌握旋转的性质是解题的关键.三、解答题(共66分)19、(1)详见解析;(2)八年级班选手的成绩总体上较稳定;(3)八年级班实力更强一些【分析】(1)根据条形统计图给出的数据,把这组数据从小到大排列,找出最中间的数求出中位数,再根据方差的计算公式进行计算,以及极差的定义即可得出答案;(2)根据两个班的平均分相同,再根据方差的意义即可得出答案;(3)根据平均数的计算公式分别求出八(1)班、八(2)班的平均成绩,再进行比较即可得出答案.【详解】解:∵共有5个人,八(1)的成绩分别是75,65,70,75,90,把这组数据从小到大排列为65,70,75,75,90,∴这组数据的中位数是75分,方差是:[(75-75)2+(65-75)2+(70-75)2+(75-75)2+(90-75)2]=70;八(2)的极差是:90-60=1;故答案为:75、70、1.如下表:平均数(分)中位数(分)极差(分)方差八年级班八年级班两个班平均分相同,八年级班的方差小,则八年级班选手的成绩总体上较稳定.∵八年级班前三名选手的平均成绩为:分八年级班前三名选手的平均成绩为:分八年级班实力更强一些.【点睛】此题考查了平均数、中位数、方差.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.20、(1)①;②(-,0);(2);(3).【分析】(1)①把x=2,y=代入中求出k值即可;②作DE⊥AB于E,先求出点A、点B坐标,继而求出OA、OB、AB的长度,由角平分线的性质可得到OD=DE,于是BE=OB可求BE、AE的长,然后在中用勾股定理可列方程,解方程即可求得OD的长;(2)求得点A坐标是(-4,0),点C坐标是(2,),由△为等腰三角形,可知OC=OA=4,故,解方程即可;(3)由直线经过点,得=,由(2)知,故,用k表示p代入中得到关于k的不等式,解不等式即可.【详解】解:(1)当时,点C坐标是,①把x=2,y=代入中,得,解得,所以一次函数的表达式是;②如图,平分交轴于点,作DE⊥AB于E,∵在中,当x=0时,y=3;当y=0时,x=-4,∴点A坐标是(-4,0),点B坐标是(0,3),∴OA=4,OB=3,∴,∵平分,DE⊥AB,DO⊥OB,∴OD=DE,∵BD=BD,∴,∴BE=OB=3,∴AE=AB-BE=5-3=2,∵在中,,∴,∴OD=,∴点D坐标是(-,0),(2)∵在中,当y=0时,x=-4;当x=2时,y=,∴点A坐标是(-4,0),点C坐标是(2,),∵△为等腰三角形,∴OC=OA=4,∴,∴,(不合题意,舍去),∴.(3)∵直线经过点,∴=,由(2)知,∴,∴,∵,∴,∴.【点睛】本题考查了一次函数的综合应用,熟练掌握一次函数的性质及运用数形结合的思想解题是关键.21、(1)6;(2)2,位置关系见解析(3)8,见解析(4)2,【分析】(1)利用等腰直角三角形的性质即可解答.(2)根据全等三角形的性质即可解答.(3)根据直角三角形两个锐角互余,可证明,进一步证明,即证明,即得出答案.(4)根据题意可求出MB的值和BP的最小值,可推断MB<BP,即该等腰三角形不可能是MB=BP.再根据讨论①MP=MB和②MP=BP两种情况结合勾股定理,即可解答.【详解】(1)当是等腰直角三角形时,故答案为6(2)当时,根据全等三角形的性质得:,故答案为2∵∴又∵∴(3)当时,如图,设交点为O,∴又∵,∴(AAS)∴(4)根据题意可知,BP的最小值为8,即BP=AC时.∵∴BP不可能等于MB.当MP=MB时,如图即由勾股定理得∴当MP=BP时,如图,作交AN于点H根据题意,结合勾股定理得即解得所以t为2或【点睛】本题考查直角三角形、等腰三角形和等腰直角三角形的性质和三角形全等的判定和性质,结合勾股定理是解本题的关键.综合性较强.22、1【解析】设这个多边形的边数为n,根据多边形的内角和定理得到,然后解方程即可.【详解】解:设这个多边形的边数是n,依题意得,,.答:这个多边形的边数是1.【点睛】考查了多边形的内角和定理,关键是根据n边形的内角和为解答.23、(1);(2);(3)【分析】根据分式的混合运算法则进行计算即可,同时注意运算的顺序.【详解】(1),,;(2),;(3),,,.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.24、(1);(2)9;(3)【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第个等式为;故答案为;(2)原式;(3),,,.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.25、(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解析】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论