版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省遵义市播州区泮水中学数学八上期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列图形中是轴对称图形的有()A. B. C. D.2.已知点P−1−2a,5关于x轴的对称点和点Q3,b关于y轴的对称点相同,则点Aa,bA.1,−5 B.1,5 C.−1,5 D.−1,−53.若4x2+kxy+9y2是一个完全平方式,则k的值是()A.12 B.72 C.±36 D.±124.函数与的图象相交于点则点的坐标是()A. B. C. D.5.根据下列表述,能确定具体位置的是()A.实验中学东 B.南偏西30°C.东经120° D.会议室第7排,第5座6.如图,点D,E分别在AC,AB上,BD与CE相交于点O,已知∠B=∠C,现添加下面的哪一个条件后,仍不能判定△ABD≌△ACE的是()A.AD=AE B.AB=AC C.BD=CE D.∠ADB=∠AEC7.下列各式中,能运用“平方差公式”进行因式分解的是()A. B. C. D.8.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是()A. B. C. D.9.下列各因式分解中,结论正确的是()A.B.C.D.10.关于直线下列说法正确的是()A.点不在上 B.直线过定点C.随增大而增大 D.随增大而减小二、填空题(每小题3分,共24分)11.分解因式:x-x3=____________.12.命题“对顶角相等”的逆命题是__________.13.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为.14.如图,中,,将折叠,使点与的中点重合,折痕为则线段的长为________.15.计算:___.16.已知:如图,在长方形ABCD中,AB=4,AD=1.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为__秒时,△ABP和△DCE全等.17.如图,在的同侧,,点为的中点,若,则的最大值是_____.18.如图,一次函数和的图象交于点.则关于,的二元一次方程组的解是_________.三、解答题(共66分)19.(10分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:△DCF≌△DEB;(2)若DE=5,EB=4,AF=8,求AD的长.20.(6分)在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,上存在点K,满足PK=1,直接写出b的取值范围.21.(6分)为了进一步了解某校初中学生的体质健康状况,对八年级的部分学生进行了体质监测,同时统计了每个人的得分(假设这个得分为,满分为50分).体质检测的成绩分为四个等级:优秀、良好、合格、不合格.根据调查结果绘制了下列两福不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)补全上面的扇形统计图和条形统计图;(2)被测试的部分八年级学生的体质测试成绩的中位数落在等级:(3)若该校八年级有1400名学生,估计该校八年级体质为“不合格”的学生约有多少人?22.(8分)甲、乙两人分别从丙、丁两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达丁地后,乙继续前行.设出发后,两人相距,图中折线表示从两人出发至乙到达丙地的过程中与之间的函数关系.根据图中信息,求:(1)点的坐标,并说明它的实际意义;(2)甲、乙两人的速度.23.(8分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.(1)求证:BE=AD(2)求的度数;(3)若PQ=3,PE=1,求AD的长.24.(8分)已知,如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.25.(10分)一个正方形的边长增加,它的面积增加了,求原来这个正方形的边长.26.(10分)先化简,再求值:,其中=1.
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A.是中心对称图形,不是轴对称图形,不符合题意,B.是轴对称图形,符合题意,C.是中心对称图形,不是轴对称图形,不符合题意,D.既不是中心对称图形,也不是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.2、B【解析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y)∴P(-1-2a,5)关于x轴的对称点的坐标是(-1-2a,-5),Q(3,b)关于y轴的对称点的坐标是(-3,b),因而就得到关于a,b的方程,从而得到a,b的值.则A(a,b)关于x轴对称的点的坐标就可以得到.【详解】∵P(-1-2a,5)关于x轴的对称点的坐标是(-1-2a,-5),Q(3,b)关于y轴的对称点的坐标是(-3,b);∴-1-2a=-3,b=-5;∴a=1,∴点A的坐标是(1,-5);∴A关于x轴对称的点的坐标为(1,5).故选B.【点睛】本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.3、D【分析】根据完全平方公式可知,这里首末两项是2x和3y的平方,那么中间项为加上或减去2x和3y的乘积的2倍.【详解】解:∵4x2+kxy+9y2是完全平方式,∴kxy=±2×2x•3y,解得k=±1.故选:D.【点睛】本题考查完全平方公式的知识,解题的关键是能够理解并灵活应用完全平方公式.4、A【分析】把两个函数解析式联立,解方程组,方程组的解是交点的坐标.【详解】解:由题意得:解得:把代入②得:所以交点坐标是.故选A.【点睛】本题考查的是函数的交点坐标问题,解题的关键是转化为方程组问题.5、D【分析】根据确定位置的方法,逐一判断选项,即可.【详解】A.实验中学东,位置不明确,不能确定具体位置,不符合题意,B.南偏西30°,只有方向,没有距离,不能确定具体位置,不符合题意,C.东经120°,只有经度,没有纬度,不能确定具体位置,不符合题意,D.会议室第7排,第5座,能确定具体位置,符合题意.故选:D.【点睛】本题主要考查确定位置的方法,掌握确定位置的方法,是解题的关键.6、D【分析】用三角形全等的判定知识,便可求解.【详解】解:已知∠B=∠C,∠BAD=∠CAE,若添加AD=AE,可利用AAS定理证明△ABE≌△ACD,故A选项不合题意;若添加AB=AC,可利用ASA定理证明△ABE≌△ACD,故B选项不合题意;若添加BD=CE,可利用AAS定理证明△ABE≌△ACD,故C选项不合题意;若添加∠ADB=∠AEC,没有边的条件,则不能证明△ABE≌△ACD,故D选项合题意.故选:D.【点睛】熟悉全等三角形的判定定理,是必考的内容之一.7、B【分析】根据平方差公式的特点:①两项式;②两个数的平方差,对每个选项进行判断即可.【详解】A.,提公因式进行因式分解,故A选项不符合题意B.,利用平方差公式进行因式分解,故B选项符合题意C.=(x-2),运用完全平方公式进行因式分解,故C选项不符合题意D.,不能因式分解,故D选项不符合题意故选:B【点睛】本题考查了用平方差公式进行因式分解的知识,解题的关键是掌握平方差公式特点.8、C【解析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.9、D【分析】根据因式分解的定义逐项判断即可.【详解】解:A.,变形错误,不是因式分解,不合题意;B.,变形错误,不是因式分解,不合题意;C.,变形错误,不是因式分解,不合题意;D.,变形正确,是因式分解,符合题意.故选:D【点睛】本题考查了因式分解的定义,“将一个多项式变形为几个整式的积的形式叫因式分解”,注意因式分解是一种变形,故等号左右两边要相等.10、B【分析】将点的坐标代入可判断A、B选项,利用一-次函数的增减性可判断C、D选项.【详解】解:A.当x=0时,可得y=k,即点(0,k)在直线I上,故A不正确;B.当x=-1时,y=-k+k=0,即直线过定点(-1,0),故B正确;C、D.由于k的符号不确定,故C、D都不正确;故答案为B.【点睛】本题主要考查了一次函数图象与系数的关系,掌握函数图象上点的坐标与函数解忻式的关系及一次函数的增减性是解答本题的关键.二、填空题(每小题3分,共24分)11、x(1+x)(1-x)【分析】直接提取公因式x,再利用平方差公式分解因式得出答案.【详解】x−x3=x(1−x2)=x(1−x)(1+x).故答案为x(1−x)(1+x).【点睛】本题考查提取公因式法以及公式法分解因式,正确应用公式法是解题关键.12、相等的角是对顶角【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:相等的角是对顶角.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13、1.5×10-1【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015=1.5×10﹣1,故答案为1.5×10﹣1.考点:科学记数法—表示较小的数.14、1【分析】根据题意,设BN=x,由折叠DN=AN=9-x,在利用勾股定理列方程解出x,就求出BN的长.【详解】∵D是CB中点,BC=6∴BD=3设BN=x,AN=9-x,由折叠,DN=AN=9-x,在中,,,解得x=1∴BN=1.故答案是:1.【点睛】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长.15、-6【分析】利用零指数幂、负整数指数幂以及乘方的意义计算即可得到结果.【详解】故答案是:【点睛】本题综合考查了乘方的意义、零指数幂以及负整数指数幂.在计算过程中每一部分都是易错点,需认真计算.16、1或2【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=11-2t=2即可求得结果.【详解】因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=11﹣2t=2,解得t=2.所以,当t的值为1或2秒时.△ABP和△DCE全等.故答案为:1或2.【点睛】本题考查了全等三角形的判定,要注意分类讨论.17、14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点关于的对称点,点关于的对称点.,,,,,为等边三角形,的最大值为,故答案为.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题18、【解析】根据一次函数的关系可得方程组的解为交点M的横纵坐标,把y=1代入求出M的坐标即可求解.【详解】把y=1代入,得解得x=-2∴关于,的二元一次方程组的解是故答案为.【点睛】此题主要考查一次函数与方程的关系,解题的关键是根据题意求出M点的坐标.三、解答题(共66分)19、(1)见解析;(2)AD=1.【分析】(1)先利用角平分线的性质定理得到DC=DE,再利用HL定理即可证得结论.(2)由△DCF≌△DEB得CD=DE=5,CF=BE=4,进而有AC=12,在Rt△ACD中,利用勾股定理即可解得AD的长.【详解】(1)∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL);(2)∵△DCF≌△DEB,∴CF=EB=4,∴AC=AF+CF=8+4=12,又知DC=DE=5,在Rt△ACD中,AD=.【点睛】本题考查了角平分线的性质定理、全等三角形的判定与性质、勾股定理,熟练掌握角平分线的性质定理和HL定理证明三角形全等是解答的关键.20、(1)①(3,1);②1;③或;(2)当点D在AB上方时,若直线m上存在点P,上存在点K,满足PK=1,则;当点D在AB下方时,若直线m上存在点P,上存在点K,满足PK=1,则.或【分析】(1)①根据A,B关于直线x=2对称解决问题即可.②求出直线OA与直线x=0.5的交点C的坐标即可判断.③由题意,根据△ABC上所有点到y轴的距离都不小于1,构建不等式即可解决问题.(2)由题意AB=,由△ABD是以AB为斜边的等腰直角三角形,推出点D到AB的距离为1,分两种情形分别求解即可解决问题.【详解】解:(1)①如图1中,当A(1,1),A,B关于直线x=2对称,∴B(3,1).故答案为(3,1).②如图2中,当A(﹣0.5,1),,直线l:x=0.5,设为,在上,直线AC的解析式为y=﹣2x,∴C(0.5,﹣1),∴点C到x轴的距离为1,故答案为1.③由题意,∵上所有点到y轴的距离都不小于1,∴t﹣1≥1或t+1≤﹣1,解得或.故答案为:或.(2)如图3中,∵,∴AB=∵是以AB为斜边的等腰直角三角形,∴点D到AB的距离为1,∴当点D在AB上方时,若直线m上存在点P,上存在点K,满足PK=1,则.当点D在AB下方时,若直线m上存在点P,上存在点K,满足PK=1,则.综上:的取值范围是:【点睛】本题属于一次函数综合题,考查了一次函数的性质,轴对称,等腰三角形的性质等知识,解题的关键是理解题意,学会利用参数根据不等式解决问题.21、(1)见解析;(2)合格;(3)估计该校八年级体质为“不合格”的学生约有448人.【分析】(1)首先综合两个统计图求出调查的总人数,则可得出不合格人数和合格人数所占百分比,即可画出统计图;(2)根据中位数定义即可得解;(3)根据样本中体质为“不合格”的学生所占的百分比即可求解.【详解】(1)根据两个统计图,得调查的总人数为(人)则不合格的人数为50-8-6-20=16(人)合格人数占总数百分比为20÷50=40%补全的图形,如图所示:(2)由条形图知,共有50人,排序后第25、26名的学生的成绩都是合格,故其中位数落在合格等级;故答案为合格;(3)由(1)中得知,不合格人数占总数百分比32%,1400×32%=448(人)答:估计该校八年级体质为“不合格”的学生约有448人.【点睛】此题主要考查统计调查的相关知识,熟知相关概念,即可解题.22、(1)B(1,0),点B的实际意义是甲、乙两人经过1小时相遇;(2)6km/h,4km/h.【分析】(1)两人相向而行,当相遇时y=0本题可解;
(2)分析图象,可知两人从出发到相遇用1小时,甲由相遇点到丁地只用小时,乙走这段路程要用1小时,依此可列方程.【详解】(1)设AB解析式为
把已知点P(0,10),(,),代入得,解得:∴,
当时,,
∴点B的坐标为(1,0),
点B的意义是:
甲、乙两人分别从丙、丁两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为,乙的速度为,
由已知第小时时,甲到丁地,则乙走1小时路程,甲只需要小时,∴,∴,∴甲、乙的速度分别为、.【点睛】本题考查一次函数图象性质,解答问题时要注意函数意义.同时,要分析出各个阶段
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 延安大学西安创新学院《心理学》2021-2022学年第一学期期末试卷
- 烟台理工学院《移动互联网开发技术》2022-2023学年第一学期期末试卷
- 烟台大学《二维、三维CAD(SoDorks)》2021-2022学年第一学期期末试卷
- 年度工作计划的制定要点
- 面对职场变动的应对策略计划
- 餐饮店装修合同三篇
- 艺术教育的评估与反馈机制计划
- 总结前台工作中的创新案例计划
- 八年级上册英语单词鲁教版
- 设定班级学习目标的有效方法计划
- 岭南版小学五年级上册美术教案全册
- 2024新人教版七年级上册英语期中作文预测及范文
- 《实践是检验真理的唯一标准》名师教学课件
- 15建设美丽中国【中职专用】高一思想政治《中国特色社会主义》(高教版2023基础模块)
- 低空经济与市场趋势研究报告
- 国家开放大学电大《会计信息系统》期末终考题库及标准参考答案
- 2024-2024学年第一学期小学教育集团化办学工作总结
- 《中国心力衰竭诊断和治疗指南2024》解读
- 2024儿童青少年抑郁治疗与康复痛点调研报告
- 《人工智能基础》课件-6.人类与人工智能如何和平相处
- 3.15 秦汉时期的科技与文化 课件 2024-2025学年七年级历史上学期
评论
0/150
提交评论