版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省厦门市同安区五校数学八上期末质量跟踪监视试题题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.使分式有意义的条件是()A.x≠0 B.x=-3 C.x≠-3 D.x>-3且x≠02.下列各式不成立的是()A. B.C. D.3.下列式子是分式的是()A. B. C. D.4.满足下列条件的三角形中,不是直角三角形的是有()A.三内角之比为3:4:5 B.三边长的平方之比为1:2:3C.三边长之比为3:4:5 D.三内角比为1:2:35.在下列命题中,真命题是()A.同位角相等 B.到角的两边距离相等的点在这个角的平分线上C.两锐角互余 D.直角三角形斜边上的中线等于斜边的一半6.①实数和数轴上的点一一对应.②不带根号的数一定是有理数.③一个数的立方根是它本身,这样的数有两个.④的算术平方根是1.其中真命题有()A.1个 B.2个 C.3个 D.4个7.下列运算正确的是().A.a2•a3=a6 B.5a﹣2a=3a2 C.(a3)4=a12 D.(x+y)2=x2+y28.如图,把纸片沿折叠,当点落在四边形内部时,则与之间有一种数量关系始终保持不变,试着找一找这个规律你发现的规律是()A. B.C. D.9.已知点,则点到轴的距离是()A. B. C. D.10.马虎同学的家距离学校1000米,一天马虎同学从家去上学,出发5分钟后爸爸发现他的数学课本忘记拿了,立刻带上课本去追他,在距离学校100米的地方追上了他,已知爸爸的速度是马虎同学速度的3倍,设马虎同学的速度为米/分钟,列方程为()A. B.C. D.11.下列函数中,随值增大而增大的是:①;②;③;④;⑤;⑥()A.①②③ B.③④⑤ C.②④⑤ D.①③⑤12.下列各式不是最简分式的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,△ABC的面积为11cm1,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP,过点C作CD⊥AP于点D,连接DB,则△DAB的面积是_____cm1.14.如图,将一块直角三角板放置在锐角上,使得该三角板的两条直角边、恰好分别经过、,若,则=_________.15.分式的最简公分母是_______.16.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=米,用科学记数法将16纳米表示为__________________米.17.在中,,为斜边的中点,,则_____.18.如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,则AD=_____.三、解答题(共78分)19.(8分)先化简:,再在,和1三个数中选一个你喜欢的数代入求值.20.(8分)如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短.若能,请画出点M、N的位置,若不能,请说明理由;(2)若∠ACB=40°,在(1)的条件下,求出∠MPN的度数.21.(8分)如图,已知点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:∠B=∠E.22.(10分)(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.23.(10分)如图的图形取材于我国古代数学家赵爽的《勾股圆方图》也称(《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是,小正方形的面积是,直角三角形较短的直角边为,较长的直角边为,试求的值.24.(10分)解方程组:25.(12分)如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BE=CF,求证:∠ACB=∠F.26.化简分式:,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.
参考答案一、选择题(每题4分,共48分)1、C【解析】分式有意义,分母不等于零,由此解答即可.【详解】根据题意得:x+1≠0,解得:x≠﹣1.故选C.【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.2、C【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.【详解】,A选项成立,不符合题意;,B选项成立,不符合题意;,C选项不成立,符合题意;,D选项成立,不符合题意;故选C.【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.3、B【解析】解:A、C、D是整式,B是分式.故选B.4、A【分析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.【详解】A、设三个内角的度数为,根据三角形内角和公式,求得,所以各角分别为45°,60°,75°,故此三角形不是直角三角形;B、三边符合勾股定理的逆定理,所以是直角三角形;C、设三条边为,则有,符合勾股定理的逆定理,所以是直角三角形;D、设三个内角的度数为,根据三角形内角和公式,求得,所以各角分别为30°,60°,90°,所以此三角形是直角三角形;故选:A.【点睛】本题考查了三角形内角和定理和勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、D【分析】逐项作出判断即可.【详解】解:A.同位角相等,是假命题,不合题意;B.到角的两边距离相等的点在这个角的平分线上,是假命题,不合题意;C.两锐角互余,是假命题,不合题意;D.直角三角形斜边上的中线等于斜边的一半,是真命题,符合题意.故选:D【点睛】本题考查了同位角,互余,角平分线的判定,直角三角形性质,熟知相关定理是解题关键,注意B选项,少了“在角的内部”这一条件.6、A【分析】根据数轴的性质与实数的性质及二次根式的性质依次判断即可.【详解】实数和数轴上的点一一对应,①是真命题;不带根号的数不一定是有理数,例如π是无理数,②是假命题;一个数的立方根是它本身,这样的数有±1,0,共3个,③是假命题;的算术平方根是3,④是假命题;综上所述,只有一个真命题,故选:A.【点睛】本题主要考查了命题真假的判断,熟练掌握各章节的相关概念是解题关键.7、C【解析】试题分析:选项A,根据同底数幂的乘法可得a2•a3=a5,故此选项错误;选项B,根据合并同类项法则可得5a﹣2a=3a,故此选项错误;选项C,根据幂的乘方可得(a3)4=a12,正确;选项D,根据完全平方公式可得(x+y)2=x2+y2+2xy,故此选项错误;故答案选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.8、A【分析】画出折叠之前的部分,连接,由折叠的性质可知,根据三角形外角的性质可得∠1=,∠2=,然后将两式相加即可得出结论.【详解】解:画出折叠之前的部分,如下图所示,连接由折叠的性质可知∵∠1是的外角,∠2是的外角∴∠1=,∠2=∴∠1+∠2=+===故选A.【点睛】此题考查的是三角形与折叠问题,掌握折叠的性质和三角形外角的性质是解决此题的关键.9、B【分析】根据点到y轴的距离等于横坐标的长度解答即可.【详解】点P(-3,5)到y轴的距离是.故选:B.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的长度是解题的关键.10、D【分析】设马虎的速度为x米/分,则爸爸的速度为3x米/分,由题意得等量关系:马虎走所用时间=马虎爸爸所用时间+5分钟,根据等量关系列出方程即可.【详解】解:马虎的速度为x米/分,则爸爸的速度为3x米/分,由题意得.
故选D.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.11、D【分析】根据一次函数的性质对各小题进行逐一分析即可.【详解】解:一次函数y=kx+b,当k>0时,y随x值增大而增大,①,k=8>0,满足;②,k=-5<0,不满足;③,k=>0,满足;④,k=<0,不满足;⑤,k=9>0,满足;⑥,k=-10<0,不满足;故选D.【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性与系数k的关系是解答此题的关键.12、B【分析】根据最简分式的概念逐项判断即得答案.【详解】解:A、是最简分式,本选项不符合题意;B、,所以不是最简分式,本选项符合题意;C、是最简分式,本选项不符合题意;D、是最简分式,本选项不符合题意.故选:B.【点睛】本题考查的是最简分式的概念,属于基础概念题型,熟知定义是关键.二、填空题(每题4分,共24分)13、2.【分析】延长CD交AB于E,依据△ACD≌△AED,即可得到CD=ED,进而得到S△BCD=S△BED,S△ACD=S△AED,据此可得S△ABD=S△AED+S△BED=S△ABC.【详解】解:如图所示,延长CD交AB于E,由题可得,AP平分∠BAC,∴∠CAD=∠EAD,又∵CD⊥AP,∴∠ADC=∠ADE=90°,又∵AD=AD,∴△ACD≌△AED(ASA),∴CD=ED,∴S△BCD=S△BED,S△ACD=S△AED,∴S△ABD=S△AED+S△BED=S△ABC=×11=2(cm1),故答案为:2.【点睛】本题考查的是作图−基本作图以及角平分线的定义,熟知角平分线的作法是解答此题的关键.14、50°【分析】根据三角形的内角和定理求出∠ABC+∠ACB的度数,再根据直角三角形两锐角互余的关系得到∠DBC+∠DCB=90°,由此即可得到答案.【详解】∵∠A+∠ABC+∠ACB=180°,,∴∠ABC+∠ACB=140°,∵∠BDC=90°,∴∠DBC+∠DCB=90°,∴=(∠ABC+∠ACB)-(∠DBC+∠DCB)=50°,故答案为:50°.【点睛】此题考查三角形的内角和定理,直角三角形两锐角互余的关系,所求角度不能求得每个角的度数时,可将两个角度的和求出,这是一种特殊的解题方法.15、【分析】根据题意,把分母进行通分,即可得到最简公分母.【详解】解:分式经过通分,得到;∴最简公分母是;故答案为:.【点睛】本题考查了最简公分母的定义,解题的关键是掌握公分母的定义,正确的进行通分.16、【分析】由1纳米=10-9米,可得出16纳米=1.6×10-1米,此题得解.【详解】∵1纳米=10-9米,∴16纳米=1.6×10-1米.故答案为1.6×10-1.【点睛】本题考查了科学计数法中的表示较小的数,掌握科学计数法是解题的关键.17、1【分析】根据直角三角形斜边上的中线等于斜边的一半可得AC=2BD,进而可得答案.【详解】如图,∵∠ABC=90°,点D为斜边AC的中点,∴AC=2BD,∵BD=5,∴AC=1,故答案为:1.【点睛】此题主要考查了直角三角形的性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.18、1【分析】根据直角三角形两锐角互余求出∠BDC=30°,然后根据30°角所对的直角边等于斜边的一半求出BD,再求出∠ABC,然后求出∠ABD=15°,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,从而得解.【详解】解:∵∠DBC=60°,∠C=90°,
∴∠BDC=90°-60°=30°,
∴BD=2BC=2×4=1,
∵∠C=90°,∠A=15°,
∴∠ABC=90°-15°=75°,
∴∠ABD=∠ABC-∠DBC=75°-60°=15°,
∴∠ABD=∠A,
∴AD=BD=1.
故答案为:1.【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等角对等边的性质,熟记性质是解题的关键.三、解答题(共78分)19、,时,原式=.【分析】先计算括号内,再将除法化为乘法后约分化简,根据分式有意义分母不能为0,,所以将代入计算即可.【详解】解:原式===,∵分式有意义,,即,∴当时,原式=.【点睛】本题考查分式的化简求值.注意代值时,要代入整个过程出现的分母都不为0的值.20、(1)详见解析.(2)100°.【分析】(1)如图:作出点P关于AC、BC的对称点D、G,然后连接DG交AC、BC于两点,标注字母M、N;
(2)根据对称的性质,易求得∠C+∠EPF=180°,由∠ACB=48°,易求得∠D+∠G=48°,即而求得答案.【详解】解:(1)①作出点P关于AC、BC的对称点D、G,
②连接DG交AC、BC于两点,
③标注字母M、N;(2)∵PD⊥AC,PG⊥BC,
∴∠PEC=∠PFC=90°,
∴∠C+∠EPF=180°,
∵∠C=40°,
∴∠EPF=140°,
∵∠D+∠G+∠EPF=180°,
∴∠D+∠G=40°,
由对称可知:∠G=∠GPN,∠D=∠DPM,
∴∠GPN+∠DPM=40°,
∴∠MPN=140°-40°=100°.【点睛】此题考查了最短路径问题以及线段垂直平分线的性质,注意数形结合思想在解题中的应用.21、见解析【分析】先证出BC=EF,∠ACB=∠DFE,再证明△ACB≌△DFE,得出对应角相等即可.【详解】证明:∵BF=CE,
∴BC=EF,
∵AC∥DF,
∴∠ACB=∠DFE,
在△ACB和△DFE中,,∴△ACB≌△DFE(SAS),
∴∠B=∠E.【点睛】本题考查了全等三角形的判定与性质、平行线的性质,熟练掌握全等三角形的判定方法,证出三角形全等是解题的关键.22、(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;
(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;
(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP(SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
∴∠BAD=∠CAE,
在△ABD和△ACE中,,
∴△ABD≌△ACE;
(2)如图2,∵△ABC和△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,,
∴△ABD≌△ACE,
∴BD=CE,①正确,∠ADB=∠AEC,
记AD与CE的交点为G,
∵∠AGE=∠DGO,
∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,
∴∠DOE=∠DAE=60°,
∴∠BOC=60°,②正确,
在OB上取一点F,使OF=OC,
∴△OCF是等边三角形,
∴CF=OC,∠OFC=∠OCF=60°=∠ACB,
∴∠BCF=∠ACO,
∵AB=AC,
∴△BCF≌△ACO(SAS),
∴∠AOC=∠BFC=180°-∠OFC=120°,
∴∠AOE=180°-∠AOC=60°,③正确,
连接AF,要使OC=OE,则有OC=CE,
∵BD=CE,
∴CF=OF=BD,
∴OF=BF+OD,
∴BF<CF,
∴∠OBC>∠BCF,
∵∠OBC+∠BCF=∠OFC=60°,
∴∠OBC>30°,而没办法判断∠OBC大于30度,
所以,④不一定正确,
即:正确的有①②③,
故答案为①②③;
(3)如图3,
延长DC至P,使DP=DB,
∵∠BDC=60°,
∴△BDP是等边三角形,
∴BD=BP,∠DBP=60°,
∵∠BAC=60°=∠DBP,
∴∠ABD=∠CBP,
∵AB=CB,
∴△ABD≌△CBP(SAS),
∴∠BCP=∠A,
∵∠BCD+∠BCP=180°,
∴∠A+∠BCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编本二年级上册语文第二至七单元(内容含课文口语交际及语文园地)全部教案
- 城市规划学徒指导手册
- 油气勘探钻探施工合同
- 劳务派遣员工健康检查
- 汽车制造锅炉房施工合同
- 环保项目严禁参与虚假环保承诺
- 硫酸厂宿舍楼施工协议
- 科技园区研发创新车库改造协议
- 石油公司出纳人员聘用合同
- 室内运动场地坪施工协议
- 2024至2030年海上风电智能运维行业市场需求与竞争战略分析报告
- Unit 2 This is my pencil. Lesson 10(教学设计)-2024-2025学年人教精通版英语三年级上册
- 中学生法律知识竞赛考试题库200题(含各题型)
- 公园保洁服务投标方案
- 食品保质期延长技术研究
- 初中数学试题大全(六十九)尺规作图难题
- 医院等级创建工作汇报
- 2024-2030年中国索道缆车市场运行状况与未来经营模式分析报告
- 高一思想政治上册2024-2025学年达标测试试卷及答案部编版
- SHT+3413-2019+石油化工石油气管道阻火器选用检验及验收标准
- 09BJ13-4 钢制防火门窗、防火卷帘
评论
0/150
提交评论