版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区包头市青山区2025届数学八上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E.若△ABC的周长为22,BE=4,则△ABD的周长为()A.14 B.18 C.20 D.262.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个3.《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x,乙持钱为y,则可列方程组A. B. C. D.4.下列图形中的曲线不表示y是x的函数的是()A. B. C. D.5.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形 B.锐角三角形C.直角三角形 D.钝角三角形6.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA7.下列篆字中,轴对称图形的个数有()A.1个 B.2个 C.3个 D.4个8.的平方根与-8的立方根之和是()A.0 B.-4 C.4 D.0或-49.下列图案属于轴对称图形的是()A. B. C. D.10.已知正比例函数()的函数值随的增大而增大,则函数的图象大致是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,等边△中,于,,点、分别为、上的两个定点且,在上有一动点使最短,则的最小值为_____.12.比较大小:58_____5-12.13.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.14.开州区云枫街道一位巧娘,用了7年时间,绣出了21米长的《清明上河图》.全图长21米,宽0.65米,扎了600多万针.每针只约占0.000002275平方米.数据0.000002275用科学记数法表示为_________.15.在如图所示的方格中,连接格点AB、AC,则∠1+∠2=_____度.16.如果三角形的三边分别为,,2,那么这个三角形的最大角的度数为______.17.在实数范围内分解因式:_______.18.如图1,将边长为a的大正方形剪去一个边长为b的小正方形(ab),将剩下的阴影部分沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a,b的等式表示为_________________.三、解答题(共66分)19.(10分)某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了名学生;并在图中补全条形统计图;(2)如果全校共有学生1600名,请估计该校最喜欢“科普”书籍的学生约有多少人?20.(6分)正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.21.(6分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.22.(8分)已知一次函数的图象经过点A(0,),且与正比例函数的图象相交于点B(2,),求:(1)一次函数的表达式;(2)这两个函数图象与y轴所围成的三角形OAB的面积.23.(8分)已知,如图,在中,、分别是的高和角平分线,若,(1)求的度数;(2)写出与的数量关系,并证明你的结论24.(8分)如图,平行四边形的对角线交于点,分别过点作,连接交于点.(1)求证:;(2)当等于多少度时,四边形为菱形?请说明理由.25.(10分)如图所示,在中,,D是上一点,过点D作于点E,延长和,相交于点F,求证:是等腰三角形.26.(10分)某地长途汽车公司规定旅客可随身携带一定质量的行李,如果超过规定质量,则需要购买行李票,行李票元是行李质量的一次函数,如图所示:(1)求与之间的表达式(2)求旅客最多可免费携带行李的质量是多少?
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据线段的垂直平分线的性质得到DB=DC,BC=2BE=8,根据三角形的周长公式计算即可.【详解】∵DE是BC的垂直平分线,∴DB=DC,BC=2BE=8,∵△ABC的周长为22,∴AB+BC+AC=22,∴AB+AC=14,∴△ABD的周长=AD+BD+AB=AD+CD+AB=AB+AC=14,故选A.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、C【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.3、B【分析】由乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,列出方程组求解即可.【详解】解:由题意得:,故选B.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是理解题意列出方程组.4、C【分析】函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.故选C【点睛】考点:函数的定义5、D【解析】试题分析:根据三角形的内角和定理求出∠C,即可判定△ABC的形状.解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.点评:本题考查了三角形的内角和定理,比较简单,求出∠C的度数是解题的关键.6、D【详解】试题分析:△ABC和△CDE是等边三角形BC=AC,CE=CD,即在△BCD和△ACE中△BCD≌△ACE故A项成立;在△BGC和△AFC中△BGC≌△AFCB项成立;△BCD≌△ACE,在△DCG和△ECF中△DCG≌△ECFC项成立D项不成立.考点:全等三角形的判定定理.7、C【分析】根据轴对称图形的概念求解.【详解】根据轴对称图形的定义,是轴对称图形的是图①③④,共有3个.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8、D【解析】首先计算的平方根、-8的立方根,然后求和即可.【详解】∵=4,∴的平方根为2,∵-8的立方根为-2,∴的平方根与-8的立方根之和是0或-4,故选D.【点睛】本题考查平方根与立方根,一个正数的平方根有两个,它们互为相反数,0的平方根是0,熟练掌握平方根与立方根的概念是解题关键.9、A【分析】根据轴对称图形的定义解答即可.【详解】A.是轴对称图形,故正确;B.不是轴对称图形,故错误;C.不是轴对称图形,故错误;D.不是轴对称图形,故错误.故选:A.本题考查了轴对称图形的定义.掌握轴对称图形的定义是解答本题的关键.10、A【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【详解】解:∵随的增大而增大,∴k>0,又经过点(0,2),同时随的增大而增大,故选A.【点睛】本题主要考查了一次函数的图象,掌握一次函数的图象是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小,最小值PE+PQ=PE+EQ′=PQ′;【详解】解:如图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=3.1cm,作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,∵AQ=2cm,AD=DC=3.1cm,∴QD=DQ′=1.1cm,∴CQ′=BP=2cm,∴AP=AQ′=1cm,∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=1cm,∴PE+QE的最小值为:1cm.故答案为1.【点睛】本题考查等边三角形的性质和判定,轴对称的性质,以及最短距离问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.12、>【解析】利用作差法即可比较出大小.【详解】解:∵58∴58>5故答案为>.13、.【分析】过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.【详解】解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=2,CN=3,∴MN2=22+32,∴MN=考点:2.正方形的性质;2.全等三角形的判定与性质.14、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】1.111112275=.故答案为:.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×11﹣n,其中1≤|a|<11,n为由原数左边起第一个不为零的数字前面的1的个数所决定.15、1【分析】根据勾股定理分别求出AD2、DE2、AE2,根据勾股定理的逆定理得到△ADE为等腰直角三角形,得到∠DAE=1°,结合图形计算,得到答案.【详解】解:如图,AD与AB关于AG对称,AE与AC关于AF对称,连接DE,由勾股定理得,AD2=22+12=5,DE2=22+12=5,AE2=32+12=10,则AD2+DE2=AE2,∴△ADE为等腰直角三角形,∴∠DAE=1°,∴∠GAD+∠EAF=90°﹣1°=1°,∴∠1+∠2=1°;故答案为:1.【点睛】本题考查的是勾股定理、勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.16、90°【解析】∵()2+22=()2,∴此三角形是直角三角形,∴这个三角形的最大角的度数为90°,故答案为90°.17、【分析】先把含未知数项配成完全平方,再根据平方差公式进行因式分解即可.【详解】故填:.【点睛】本题主要考查利用完全平方和平方差公式进行因式分解,熟练掌握公式是关键.18、【解析】图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2−b2;图(2)中阴影部分为梯形,其上底为2b,下底为2a,高为(a-b)则其面积为(a+b)(a−b),∵前后两个图形中阴影部分的面积,∴.故答案为.三、解答题(共66分)19、(1)200,作图见解析;(2)1.【分析】(1)从扇形图可知文艺占40%,从条形统计图可知文艺有80人,可求出总人数.求出科普的人数,画出条形统计图.(2)全校共有人数×科普所占的百分比,就是要求的人数.【详解】解:(1)8040%=200,补全条形统计图如图所示:(2)(人).答:估计该校最喜欢“科普”书籍的学生约有1人.【点睛】本题考查从扇形统计图和条形统计图获取信息的能力,以及画条形统计图的能力,关键知道扇形统计图考查的部分占总体的百分比,条形统计图考查的是每组里面的具体数.20、(1)k=5;(2).【解析】试题分析:(1)根据待定系数法将点P(1,m)代入函数中,即可求得k的值;
(2)先根据题意画出图形,再根据交点坐标即可求出三角形的面积.试题解析:(1)∵正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),∴把点P(1,m)代入得m=2,m=-3+k,解得k=5;(2)由(1)可得点P的坐标为(1,2),∴所求三角形的高为2.∵y=-3x+5,∴其与x轴交点的横坐标为,∴S=××2=.21、(1)∠D是直角.理由见解析;(2)2.【分析】(1)连接AC,先根据勾股定理求得AC的长,再根据勾股定理的逆定理,求得∠D=90°即可;
(2)根据△ACD和△ACB的面积之和等于四边形ABCD的面积,进行计算即可.【详解】(1)∠D是直角.理由如下:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理得AC2=202+152=1.又∵CD=7,AD=24,∴CD2+AD2=1,∴AC2=CD2+AD2,∴∠D=90°.(2)四边形ABCD的面积=AD•DC+AB•BC=×24×7+×20×15=2.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.22、(1);(2)3【分析】(1)把交点坐标代入正比例函数解析式中求出a的值,将两点的坐标代入y=kx+b中,利用待定系数法求出一次函数解析式;(2)根据三角形面积公式进行计算.【详解】(1)∵点(2,a)在正比例函数y=x的图象上,
∴a=2×=1;
将点(0,-3),(2,1)代入y=kx+b得:
,
解得:,
∴一次函数的解析式为:y=2x-3;(2)S=.【点睛】考查了两直线相交和求一次函数解析式,解题关键是熟练掌握待定系数法.23、(1)15°;(2),理由见解析【分析】(1)先根据三角形内角和可得到,再根据角平分线与高线的定义得到,,求出,然后利用计算即可.(2)根据题意可以用和表示出和,从而可以得到与的关系.【详解】解:(1),,,.是的角平分线,.为的外角,.是的高,..(2)由(1)知,又.,.【点睛】本题考查三角形内角和定理、角的平分线的性质、直角三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.24、(1)见解析;(2)当满足时,四边形为菱形,证明详见解析【分析】(1)证明四边形OCFD是平行四边形,得出OD=CF,证出O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44780-2024健康管理健康信息存储架构
- GB/T 13074-2024血液净化术语
- 浅谈“双减”背景下三年级英语作业设计有效性的策略
- 《水电站》重点笔记
- SZSD 0067-2024智慧社区 老年人智能助餐场景设计指南
- 海口-PEP-2024年11版小学三年级下册英语第六单元真题
- 物质推断与转化(专项训练)-2023年中考化学二轮复习(原卷版)
- 2024年民宿旅游项目资金申请报告代可行性研究报告
- 强迫对流管簇管外放热系数测定实验
- 【沪科】期末模拟卷【九年级上下册】
- 大学生劳动教育-合肥工业大学中国大学mooc课后章节答案期末考试题库2023年
- 诉讼前民事调解委托书
- 孩子探视权起诉书
- 国家开放大学一网一平台电大《当代中国政治制度》形考任务1-4网考题库及答案
- 无人机基础 教案
- 机电运输专项检查实施方案
- 英语语法与长难句理解知到章节答案智慧树2023年山东石油化工学院
- 淮剧专题讲座
- 儿科学教学课件:儿童股骨干骨折
- 手机摄影入门演示文稿
- GB/T 3477-2008船用风雨密单扇钢质门
评论
0/150
提交评论