版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省吉水县数学八年级第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1 B.2 C.3 D.42.下列图形既是中心对称又是轴对称图形的是()A.平行四边形和矩形 B.矩形和菱形C.正三角形和正方形 D.平行四边形和正方形3.如果分式x-1x-1的值为零,那么xA.-1 B.0 C.1 D.±14.在平面直角坐标系中,点A'(2,﹣3)可以由点A(﹣2,3)通过两次平移得到,正确的是()A.先向左平移4个单位长度,再向上平移6个单位长度B.先向右平移4个单位长度,再向上平移6个单位长度C.先向左平移4个单位长度,再向下平移6个单位长度D.先向右平移4个单位长度,再向下平移6个单位长度5.若一个多边形的每个内角都相等,且内角是其外角的4倍,则从此多边形的一个顶点出发的对角线的条数是()A.5 B.6 C.7 D.86.如图,△ABC≌△DCB,点A和点D是对应点,若AB=6cm,BC=8cm,AC=7cm,则DB的长为()A.6cm B.8cm C.7cm D.5cm7.下列长度的三条线段不能构成直角三角形的是()A.3、4、5 B.5、12、13 C.2、4、 D.6、7、88.已知A,B两点在y=2x+1上,A的坐标为(1,m),B的坐标为(3,n),则()A.m=n B.m<n C.m>n D.无法确定9.给出下列实数:、、、、、、(每相邻两个1之间依次多一个,其中无理数有A.2个 B.3个 C.4个 D.5个10.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC二、填空题(每小题3分,共24分)11.已知,正比例函数经过点(-1,2),该函数解析式为________________.12.64的立方根是_______.13.如图,在长方形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=3,CE=5,则AD的长为__________.14.若有意义,则的取值范围是__________.15.如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=12,CF=3,则AC=.16.如图,边长为acm的正方形,将它的边长增加bcm,根据图形写一个等式_____.17.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为_______.18.如图,在四边形中,且,,,平分交的延长线于点,则_________.三、解答题(共66分)19.(10分)如图,CE是△ABC的外角∠ACD的平分线,交BA的延长线于点E,已知∠B=25°,∠E=30°,求∠BAC的度数.20.(6分)分解因式:(1);(2)21.(6分)计算:(1)(2)(3)(4)22.(8分)正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.23.(8分)如图,已知,D、E分别是△ABC的边AB、AC上的点,DE交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度数.24.(8分)已知,与成反比例,与成正比例,且当x=1时,y=1;当x=1时,y=-1.求y关于x的函数解析式,并求其图像与y轴的交点坐标.25.(10分)如图,在和中,,,与相交于点.(1)求证:;(2)是何种三角形?证明你的结论.26.(10分)列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.
参考答案一、选择题(每小题3分,共30分)1、C【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=1.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.2、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、矩形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误;B、矩形、菱形既是轴对称图形,也是中心对称图形.故正确;C、等边三角形是轴对称图形,不是中心对称图形.故错误;D、正方形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、A【解析】根据分式值为零的条件(分母不等于零,分子等于零)计算即可.【详解】解:∵x-1≠0∴x≠1∵∴x=±1∴x=-1故选:A【点睛】本题考查了分式值为0的条件,当分式满足分子等于0且分母不等于0时,分式的值为0,分母不等于0这一条件是保证分式有意义的前提在计算时经常被忽视.4、D【解析】利用点A与点的横纵坐标的关系确定平移的方向和平移的距离即可.【详解】把点先向右平移4个单位,再向下平移6个单位得到点.故选D.【点睛】本题考查了坐标与图形变化平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上或减去一个整数a,相应的新图形就是把原图形向右或向左平移a个单位长度;如果把它各个点的纵坐标都加或减去一个整数a,相应的新图形就是把原图形向上或向下平移a个单位长度.掌握平移规律是解题的关键.5、C【分析】根据n边形的内角和为(n-2)∙180°,外角和为360°,列出方程求得多边形的边数;再根据从n边形的一个顶点出发的对角线条数为(n-3)条即可得出.【详解】设多边形为n边形,由题意得:(n-2)∙180°=360°×4,解得:n=10,所以从10边形的一个顶点出发的对角线的条数是10-3=7,故选C.【点睛】本题考查了多边形内角和与外角和的综合:n边形的内角和为(n-2)∙180°,外角和为360°,从n边形的一个顶点出发的对角线条数为(n-3)条,列出方程是解答本题的关键.6、C【分析】根据全等三角形的性质即可求出:AC=BD=7cm.【详解】解:∵△ABC≌△DCB,AC=7cm,∴AC=BD=7cm.故选:C.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解决此题的关键.7、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A、∵32+42=52,∴此三角形是直角三角形,不符合题意;B、∵52+122=132,∴此三角形是直角三角形,不符合题意;C、∵22+()2=42,∴此三角形是直角三角形,不符合题意;D、∵62+72≠82,∴此三角形不是直角三角形,符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8、B【分析】利用一次函数图象上点的坐标特征可得出m,n的值,再根据其增减性比较后即可得出结论.【详解】解:将点A(1,m),B(3,n)代入y=2x+1,解得m=3,n=7∵3<7,∴m<n.故选:B.【点睛】本题考查一次函数上点的特征和增减性,熟练掌握一次函数的相关性质是关键.9、B【分析】根据无理数是无限不循环小数,可得答案.【详解】解:=−5,=1.2,
实数:、、、、、、(每相邻两个1之间依次多一个0),其中无理数有、、-0.1010010001…(每相邻两个1之间依次多一个0)共3个.
故选:B.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.10、C【解析】试题分析:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.考点:全等三角形的判定.二、填空题(每小题3分,共24分)11、y=-2x【解析】把点(-1,2)代入正比例函数的解析式y=kx,即可求出未知数的值从而求得其解析式.【详解】设正比例函数的解析式为y=kx(k≠0),∵图象经过点(-1,2),∴2=-k,此函数的解析式是:y=-2x;故答案为:y=-2x【点睛】此题考查待定系数法确定函数关系式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.12、4.【分析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.13、1【分析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理计算出AD即可.【详解】连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=5,在Rt△ADE中,AD=,故答案为1.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).14、一切实数【分析】根据使立方根有意义的条件解答即可.【详解】解:立方根的被开方数可以取一切实数,所以可以取一切实数.故答案为:一切实数.【点睛】本题考查使立方根有意义的条件,理解掌握该知识点是解答关键.15、1【解析】试题分析:因为EF是AB的垂直平分线,所以AF=BF,因为BF=12,CF=3,所以AF=BF=12,所以AC=AF+FC=12+3=1.考点:线段垂直平分线的性质16、.【解析】依据大正方形的面积的不同表示方法,即可得到等式.【详解】由题可得,大正方形的面积=a2+2ab+b2;大正方形的面积=(a+b)2;∴a2+2ab+b2=(a+b)2,故答案为a2+2ab+b2=(a+b)2【点睛】本题主要考查了完全平方公式的几何应用,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.17、米【分析】河水的深、竹竿的长、离岸的距离三者构成直角三角形,作出图形,根据勾股定理即可求解.【详解】如图,在Rt△ABC中,AC=1.5cm.CD=AB-BC=3.5m.
设河深BC=xm,则AB=3.5+x米.
根据勾股定理得出:
∵AC3+BC3=AB3
∴1.53+x3=(x+3.5)3
解得:x=3.
【点睛】本题考查了勾股定理在实际生活中的应用,根据勾股定理可以把求线段的长的问题转化为解方程得问题是解题的关键.18、3;【分析】由,AE平分,得到∠EAB=∠F,则AB=BF=8,然后即可求出CF的长度.【详解】解:∵,∴∠DAE=∠F,∵AE平分,∴∠DAE=∠EAB,∴∠EAB=∠F,∴AB=BF=8,∵,∴;故答案为:3.【点睛】本题考查了平行线的性质,角平分线的定义,以及等角对等边,解题的关键是熟练掌握所学的性质,得到AB=BF.三、解答题(共66分)19、85°【分析】根据三角形外角性质求出∠ECD,根据角平分线定义求出∠ACE,根据三角形外角性质求出即可.【详解】解:∵∠ECD是△BCE的一个外角,∴∠ECD=∠B+∠E=55°.∵CE是∠ACD的平分线,∴∠ACE=∠ECD=55°.∵∠BAC是△CAE的一个外角,∴∠BAC=∠ACE+∠E=85°.【点睛】本题考查了三角形外角性质,角平分线定义的应用,本题的关键是掌握三角形外角性质,并能灵活运用定理进行推理20、(1);(2).【分析】(1)根据平方差公式分解即可;(2)先提取公因式,再利用完全平方公式分解.【详解】解:(1);(2).【点睛】本题考查了多项式的因式分解,属于基础题型,熟练掌握分解因式的方法是解题关键.21、(1);(2)0;(3)x-1;(4)1【分析】(1)首先根据平方差公式和完全平方公式,将各项展开,然后合并同类项即可;(2)首先将各项化到最简,然后计算即可;(3)先算括号里面的分式,然后进行除法运算即可;(4)将2018和2020都转换成2019的形式,然后约分即可.【详解】(1)原式===(2)原式==0(3)原式===(4)原式===1【点睛】此题主要考查整式的混合运算、零指数幂和负整数指数幂的运算以及分式的运算,熟练掌握,即可解题.22、(1)k=5;(2).【解析】试题分析:(1)根据待定系数法将点P(1,m)代入函数中,即可求得k的值;
(2)先根据题意画出图形,再根据交点坐标即可求出三角形的面积.试题解析:(1)∵正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),∴把点P(1,m)代入得m=2,m=-3+k,解得k=5;(2)由(1)可得点P的坐标为(1,2),∴所求三角形的高为2.∵y=-3x+5,∴其与x轴交点的横坐标为,∴S=××2=.23、∠F=26°,∠BDF=87°.【分析】根据对顶角相等可知∠CEF=∠AED;又∠ACB是△CEF的外角,所以根据外角的性质求出∠F;根据三角形内角和定理可求∠BDF的度数.【详解】解:∵∠CEF=∠AED=48°,∠ACB=∠CEF+∠F,∴∠F=∠ACB﹣∠CEF=74°﹣48°=26°;∵∠BDF+∠B+∠F=180°,∴∠BDF=180°﹣∠B﹣∠F=180°﹣67°﹣26°=87°.【点睛】此题考查三角形内角和定理和三角形的外角的性质,正确识图运用定理进行推理计算是关键.24、;函数图像与y轴交点的坐标为(0,6)【分析】根据题意设出函数关系式,把时,y=1;当x=1时,y=1代入y与x间的函数关系式便可求出未知数的值,从而求出其解析式;再令,即可求出点的坐标.【详解】解:∵与成反比例,与成正比例,∴设,,其中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论