2025届浙江省平阳县数学八年级第一学期期末检测试题含解析_第1页
2025届浙江省平阳县数学八年级第一学期期末检测试题含解析_第2页
2025届浙江省平阳县数学八年级第一学期期末检测试题含解析_第3页
2025届浙江省平阳县数学八年级第一学期期末检测试题含解析_第4页
2025届浙江省平阳县数学八年级第一学期期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省平阳县数学八年级第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如果多项式分解因式的结果是,那么的值分别是()A. B. C. D.2.下列算式中,计算结果等于的是()A. B. C. D.3.已知一次函数的图象如图所示,则一次函数的图象大致是()A. B. C. D.4.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,共有学生人数为()A.6 B.5 C.6或5 D.45.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是()A.8,15,17 B.4,6,8 C.3,4,5 D.6,8,106.若一个三角形的两边长分别为2和4,则第三边长可能是().A.1 B.2 C.3 D.77.小明想用一长方形的硬纸片折叠成一个无盖长方体收纳盒,硬纸片长为a+1,宽为a-1,如图,在硬纸片的四角剪裁出4个边长为1的正方形,沿着图中虚线折叠,这个收纳盒的体积是()A.a2-1 B.a2-2a C.a2-1 D.a2-4a+38.如图,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60° B.55° C.50° D.45°9.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”四个节气,其中轴对称图形是()A. B. C. D.10.现有纸片:4张边长为的正方形,3张边长为的正方形(),8张宽为,长为的长方形,用这15张纸片重新拼出一个长方形,那么该长方形较长的边长为()A. B. C. D.二、填空题(每小题3分,共24分)11.观察一组数据,,,,,......,它们是按一定规律排列的,那么这一组数据的第个数是_________.12.20192﹣2020×2018=_____.13.如图,△ABC是等边三角形,D是BC延长线上一点,DE⊥AB于点E,EF⊥BC于点F.若CD=3AE,CF=6,则AC的长为_____.14.分式与的最简公分母为_______________15.若a2+b2=19,a+b=5,则ab=_____.16.直线与平行,则的图象不经过____________象限.17.如图,在△ABC中,AB=AC,DE垂直平分AB于点E,交AC于点D,若△ABC的周长为26cm,BC=6cm,则△BCD的周长是__________cm.18.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.三、解答题(共66分)19.(10分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.20.(6分)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?21.(6分)已知:如图,,//,,且点、、、在同一条直线上.求证://.22.(8分)“绿水青山就是金山银山”,随着生活水平的提高人们对饮水品质的需求越来越高,岳阳市槐荫公司根据市场需求代理,两种型号的净水器,每台型净水器比每台型净水器进价多元,用万元购进型净水器与用万元购进型净水器的数量相等(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进,两种型号的共台进行试销,,购买资金不超过万元.试求最多可以购买型净水器多少台?23.(8分)某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区.已知一辆甲种货车同时可装蔬菜18吨,水果10吨;一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?24.(8分)如图,在中,,点为边上的动点,点从点出发,沿边向点运动,当运动到点时停止,若设点运动的时间为秒,点运动的速度为每秒2个单位长度.(1)当时,=,=;(2)求当为何值时,是直角三角形,说明理由;(3)求当为何值时,,并说明理由.25.(10分)如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF.(1)求证:△ACE≌△BCD;(2)求证:BF⊥AE;(3)请判断∠CFE与∠CAB的大小关系并说明理由.26.(10分)在慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)该校共有600名学生参与捐款,请估计该校学生的捐款总数.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据十字相乘法的分解方法和特点可知:,.【详解】∵多项式分解因式的结果是,

∴,,

∴,.

故选:D.【点睛】本题主要考查十字相乘法分解因式,型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:.2、B【分析】根据同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘,等法则进行计算即可得出答案.【详解】A.,所以A不符合题意B.,所以B符合题意C.,所以C不符合题意D.,所以D不符合题意.故选B.【点睛】本题考查的是整式的运算,本题的关键是掌握整式运算的法则.3、C【分析】根据一次函数与系数的关系,由已知函数图象判断k、b,然后根据系数的正负判断函数y=-bx+k的图象位置.【详解】∵函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴-b<0,∴函数y=-bx+k的图象经过第二、三、四象限.故选:C.【点睛】本题考查一次函数的图象与系数,明确一次函数图象与系数之间的关系是解题关键.4、A【分析】设共有学生x人,则书共(3x+8)本,再根据题意列出不等式,解出来即可.【详解】设共有学生x人,0≤(3x+8)-5(x-1)<3,解得5<x≤6.5,故共有学生6人,故选A.【点睛】此题主要考察不等式的应用.5、B【解析】试题解析:A.

故是直角三角形,故错误;B.

故不是直角三角形,正确;C.

故是直角三角形,故错误;D.

故是直角三角形,故错误.故选B.点睛:如果三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.6、C【分析】利用三角形的三边关系定理求出第三边长的取值范围,由此即可得.【详解】设第三边长为,由三角形的三边关系定理得:,即,观察四个选项可知,只有选项C符合,故选:C.【点睛】本题考查了三角形的三边关系定理的应用,熟记三角形的三边关系定理是解题关键.7、D【分析】根据图形,表示出长方体的长、宽、高,根据多项式乘以多项式的法则,计算即可.【详解】解:依题意得:无盖长方体的长为:a+1-2=a-1;无盖长方体的宽为:a-1-2=a-3;无盖长方体的高为:1∴长方体的体积为故选:D【点睛】本题主要考查多项式乘以多项式,熟记多项式乘以多项式的法则是解决此题的关键,此类问题中还要注意符号问题.8、C【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;

在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=∠CEO=50°.故选C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.9、D【分析】根据轴对称图形的概念判断即可.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.10、A【分析】先计算所拼成的长方形的面积(是一个多项式),再对面积进行因式分解,即可得出长方形的长和宽.【详解】解:根据题意可得:

拼成的长方形的面积=4a2+3b2+8ab,

又∵4a2+3b2+8ab=(2a+b)(2a+3b),且b<3b,

∴那么该长方形较长的边长为2a+3b.

故选:A.【点睛】本题考查因式分解的应用.能将所表示的长方形的面积进行因式分解是解决此题的关键.二、填空题(每小题3分,共24分)11、【分析】根据题意可知,分子是从开始的连续奇数,分母是从开始的连续自然数的平方,进一步即可求得第个数为.【详解】∵这组数据中的每个数都是分数,分子是从开始的连续奇数,分母是从开始的连续自然数的平方.∴这组数据的第个数是(为正整数)故答案是:(为正整数)【点睛】对于找规律的题目,通常按照顺序给出一系列量,要求我们根据这些已知的量找出一般的规律,找出的规律通常包含着序列号,因此,把变量和序列号放在一起加以比较,就比较容易的发现其中的奥秘.12、1【分析】先观察式子,将2020×2018变为(2019+1)×(2019-1),然后利用平方差公式计算即可.【详解】原式=20192﹣(2019+1)×(2019-1)=20192-(20192-1)=20192-20192+1=1故答案为:1.【点睛】本题考查了用平方差公式进行简便计算,熟悉公式特点是解题关键.13、1【分析】利用“一锐角为30°的直角三角形中,30°所对的直角边等于斜边的一半”,通过等量代换可得.【详解】解:AC与DE相交于G,如图,∵为等边三角形,∴AB=BC=AC,∠A=∠B=∠ACB=60°,∵DE⊥AE,∴∠AGE=30°,∴∠CGD=30°,∵∠ACB=∠CGD+∠D,∴∠D=30°,∴CG=CD,设AE=x,则CD=3x,CG=3x,在中,AG=2AE=2x,∴AB=BC=AC=5x,∴BE=4x,BF=5x﹣6,在中,BE=2BF,即4x=2(5x﹣6),解得x=2,∴AC=5x=1.故答案为1.【点睛】直角三角形的性质,30°所对的直角边等于斜边的一半为本题的关键.14、ab1【分析】最简公分母是按照相同字母取最高次幂,所有不同字母都写在积里,则易得分式与的最简公分母为ab1.【详解】∵和中,字母a的最高次幂是1,字母b的最高次幂是1,∴分式与的最简公分母为ab1,故答案为ab1【点睛】本题考查了最简公分母:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.15、1【分析】根据整式乘法的完全平方公式解答即可.【详解】解:∵(a+b)2=25,∴a2+2ab+b2=25,∴19+2ab=25,∴ab=1.故答案为:1.【点睛】本题考查了整式乘法的完全平方公式,属于基础题型,熟练掌握完全平方公式、灵活应用整体思想是解题的关键.16、四【解析】根据两直线平行的问题得到k=2,然后根据一次函数与系数的关系判定y=2x+1所经过的象限,则可得到y=kx+1不经过的象限.解:∵直线y=kx+1与y=2x-1平行,∴k=2,∴直线y=kx+1的解析式为y=2x+1,∴直线y=2x+1经过第一、二、三象限,∴y=kx+1不经过第四象限.故答案为四.17、1【分析】根据线段垂直平分线性质求出AD=BD,根据△ABC周长求出AC,推出△BCD的周长为BC+CD+BD=BC+AC,代入求出即可.【详解】∵DE垂直平分AB,

∴AD=BD,

∵AB=AC,△ABC的周长为26,BC=6,

∴AB=AC=(26-6)÷2=10,

∴△BCD的周长为BC+CD+BD=BC+CD+AD=BC+AC=6+10=1.故答案为:1.【点睛】本题考查了线段垂直平分线性质和等腰三角形的应用,解此题的关键是求出AC长和得出△BCD的周长为BC+AC,注意:线段垂直平分线上的点到线段两个端点的距离相等.18、1【解析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为=1,故答案为:1.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.三、解答题(共66分)19、证明见解析.【解析】试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,∵,∴△BDM≌△CEM(SAS).∴MD=ME.考点:1.等腰三角形的性质;2.全等三角形的判定与性质.20、(1)每箱井冈蜜柚需要81元,每箱井冈板栗需要121元;(2)李先生比预计的付款少付了328元【分析】(1)、根据“井冈蜜柚和井冈板栗各一箱需要211元,4箱井冈蜜柚和6箱井冈板栗需要1141元”列二元一次方程组,解之即可得.(2)根据节省的钱数=原价×数量﹣打折后的价格×数量,即可求出结论.【详解】解:(1)设每箱井冈蜜柚需要x元,每箱井冈板栗需要y元,依题意,得:,解得:.答:每箱井冈蜜柚需要81元,每箱井冈板栗需要121元.(2)211+1141﹣81×1.6×(4+1)﹣121×1.8×(6+1)=328(元).答:李先生比预计的付款少付了328元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21、见解析【分析】先利用平行线的性质和等量代换得出,,然后利用SAS即可证明,则有,最后利用同位角相等,两直线平行即可证明.【详解】解:,.,,即.在和中,,,.【点睛】本题主要考查全等三角形的判定及性质,平行线的判定及性质,掌握全等三角形的判定及性质和平行线的判定及性质是解题的关键.22、(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【分析】(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,根据数量=总价单价,结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于的分式方程,解方程检验即可.(2)设购买A型净水器台,则购买B型净水器为(50-)台,根据购买资金=A型净水器的进价购买数量+B型净水器的进价购买数量不超过9.8万元即可得出关于的一元一次不等式,解之即可得出的取值范围,也就得出最多可购买A型净水器的台数.【详解】解:(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,由题意,得解得=2000经检验,=2000是分式方程得解∴-200=1800答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)设购买A型净水器台,则购买B型净水器为(50-)台,由题意,得2000+1800(50-)≤98000解得≤40答:最多可以购买A型净水器40台.故答案为(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【点睛】本题考查了分式方程的应用,一元一次不等式的应用.解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系列出一元一次不等式方程.23、(1)三种方案:①甲5辆,乙11辆;②甲6辆,乙10辆;③甲7辆,乙9辆;(2)选择甲5辆,乙11辆时,费用最少;最少为21200元【分析】(1)设租用甲种货车x辆,则租用乙种货车为(16−x)辆,然后根据装运的蔬菜和水果数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(2)根据所付的燃油总费用等于两种车辆的燃油费之和列出函数关系式,再根据一次函数的增减性求出费用的最小值.【详解】解:(1)设租用甲种货车x辆,则租用乙种货车为(16−x)辆,根据题意得:,解得:5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)由(1)知,租用甲种货车x辆,租用乙种货车为(16−x)辆,设两种货车燃油总费用为y元,由题意得y=1600x+1200(16−x)=400x+19200,∵400>0,∴y随x的增大而增大,∴当x=5时,y有最小值,y最小=400×5+19200=21200元.答:选择租甲种货车5辆,乙种货车11辆时,所付的燃油费最少,最少是21200元.【点睛】本题考查了一元一次不等式组的应用以及一次函数的应用,读懂题目信息,找出题中不等量关系,列出不等式组是解题的关键.24、(1)CD=4,AD=16;(2)当t=3.6或10秒时,是直角三角形,理由见解析;(3)当t=7.2秒时,,理由见解析【分析】(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC-CD代入数据进行计算即可得解;

(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;

(3)过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【详解】解:(1)t=2时,CD=2×2=4,

∵∠ABC=90°,AB=16,BC=12,∴AD=AC-CD=20-4=16;(2)①∠CDB=90°时,∴解得BD=9.6,∴t=7.2÷2=3.6秒;

②∠CBD=90°时,点D和点A重合,

t=20÷2=10秒,

综上所述,当t=3.6或10秒时,是直角三角形;

(3)如图,过点B作BF⊥AC于F,

由(2)①得:CF=7.2,

∵BD=BC,∴CD=2CF=7.2×2=14.4,

∴t=14.4÷2=7.2,

∴当t=7.2秒时,,【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论